Laser driven plasma wakefield accelerators and radiation sources

Dino Jaroszynski
University of Strathclyde
Outline of talk

- Large and small accelerators + high power lasers
- Laser driven wakes
- Ultra-short bunch electron production using wakefield accelerators
- Betatron gamma ray source
- Conclusion
Large accelerators depend on superconducting Radio Frequency cavities

CERN - LHC
27 km circumference

SLAC
50 GeV in 3.3 km
20 MV/m

7 TeV in 27 km
7 MV/m
Synchrotrons light sources and free-electron lasers: tools for scientists

Synchrotron – huge size and cost is determined by accelerator technology

Diamond

DESY undulator

Gamma Ray X-ray Ultraviolet Visible Infrared Microwave Radio
Particles accelerated by electrostatic fields of plasma waves

\[E\left[\text{V/cm}\right] \approx e\sqrt{n} \]

\[\gamma_{\text{max}} \approx \frac{2\gamma_g^2a}{3} \]

Accelerators:

Surf a 10’s cm long microwave – conventional technology

Surf a 10’s \(\mu \text{m} \) long plasma wave – laser-plasma technology
Wakefield acceleration

Dephasing length: \(L_d = 4c \gamma_g^2 \sqrt{a_0} / 3 \omega_p \), which gives a maximum energy: \(\gamma \approx \frac{2}{3} \gamma_g^2 a_0 \)
Bubble structure - relativistic regime

\[R \approx \frac{\sqrt{a_0 \lambda_p}}{2} \]

ion bubble radius
ALPHA-X started in 2002
Advanced Laser Plasma High-energy Accelerators towards X-rays

Compact femtosecond duration particle, synchrotron, free-electron laser and gamma ray source $\lambda = 2.8 \text{ nm} - 1 \mu\text{m}$ (<1GeV beam)

electron bunch duration: 1-3 fs

Brilliant particle source: 10 MeV \rightarrow GeV, kA peak current, fs duration
ALPHA-X all-optical injection experiments on ASTRA

10^{18} \text{ Wcm}^{-2} \text{ in 25 mm spot}

a_0 \sim 0.7 - 1

800 \text{ nm}

350 - 540 \text{ mJ}

40 \text{ fs}

F/16 mirror

\gamma_g \approx 10

n_e \sim 1.5 \times 10^{19} \text{ cm}^{-3}

\gamma_{\text{max}} = \frac{2 \gamma_0^2 a_0}{3} \approx 150

S. Mangles et al.
Nature 2004

\tau \sim 5 - 10 \text{ fs}

I \sim 5 \text{ kA}

\frac{\delta \gamma}{\gamma} \approx 3\%

Few fs duration electron bunch
LBNL - Oxford campaign (ALPHA-X) team: GeV beams from capillary

Pre-formed plasma channels – Spence & Hooker (PRE 2001)

Channels manufactured using laser machining techniques – Jaroszynski et al., (Royal Society Transactions, 2006)
1 GeV beams

Acceleration to 1 GeV in 33 mm long pre-formed plasma channels

5% shot-to-shot fluctuations in mean energy

E = 0.48 GeV±6%
and an r.m.s. spread <5%.

12TW (73fs) - 18TW (40fs)

E = (0.50 +/-0.02) GeV
ΔE = 5.6% r.m.s
Δθ = 2.0 mrad r.m.s.
Q = 50 pC
Laser ~ 1 J
γg ≈ 30

\[\gamma_{\text{max}} = \frac{2\gamma_g^2 a_0}{3} \approx 2000 \]

TOPS laser: 1.1 J @ 10 Hz
\(\lambda = 800 \text{ nm} \)
30 fs

Strathclyde: ALPHA-X beam line

Jaroszynski et al.,
(Royal Society Transactions, 2006)
Experimental Results - energy stability

100 consecutive shots
Mean $E_0 = (137 \pm 4)$ MeV
2.8% stability

Electron Spectrometer: 200 consecutive shots (spectrum on 196 shots)
Energy spread at 130 MeV

\[\frac{\sigma_{\gamma}}{\gamma} = 0.75\% \]

r.m.s. spread of mean energy 2.8%
Experimental Results – emittance

- Second generation mask with hole $\phi \sim 25 \, \mu m$ and improved detection system

- divergence 1 – 2 mrad for this run with 125 MeV electrons
- average $\varepsilon_N = (2.2 \pm 0.7) \pi \, mm \, mrad$
- best $\varepsilon_N = (1.0 \pm 0.1) \pi \, mm \, mrad$
- Elliptical beam: $\varepsilon_{N, X} > \varepsilon_{N, Y}$
Ultra-short pulse

Measurements at Strathclyde indicate 1-2 fs electron bunches with 1-10 pC: i.e. Multi kA peak current, with energy spread and emittance – suitable for FEL
Synchrotron radiation from an ion channel wiggler: betatron radiation

- Wiggler motion – electron deflection angle $\theta \sim (p_x/p_z)$ is much larger than the angular spread of the radiation $\varphi = (1/\gamma)$

$\gamma \gg a_u \gg 1$

Deflection angle – a_u/γ

- Only when k & p point in the same direction do we get a radiation contribution.
- Spectrum rich in harmonics – peaking at $h_{\text{crit}} \approx \frac{3a_u^3}{8}$
- Radiation rate $W \propto \gamma^2$ therefore only emission at dephasing length L_d
Betatron radiation emission during LWFA

SCALING LAWS

- Betatron Frequency: \(\omega_\beta = \omega_p / \sqrt{2\gamma} \)
- Transverse momentum: \(a_\beta \propto \sqrt{\gamma n_e r_\beta} \)
- Divergence: \(\vartheta = a_\beta / \gamma \)
- Critical photon Energy: \(E_c \propto \gamma^2 n_e r_\beta \)
- Efficiency: \(N_{\text{phot/cycle}} = \alpha a_\beta \)

- Wavelength: \(\lambda_h = \frac{\lambda_\beta}{h 2 \gamma_e^2} \left(1 + \frac{a_\beta^2}{2} + (\gamma_e \varphi)^2 \right) = \frac{\sqrt{3\pi c}}{h \omega_p \gamma_e^{3/2}} \left(1 + \frac{a_\beta^2}{2} + (\gamma_e \varphi)^2 \right) \)
Gamma Ray Source demonstrated on Gemini using PW laser

10^8 photons between .1 and 7 MeV

Brilliance 10^{23} photons/(s mrad2 mm2 0.1% bandwidth) is femtosecond duration pulses
Typical high energy spectra: Gemini experiment using plasma channel 85% of shots
Synchrotron, betatron and FEL radiation peak brilliance

\[I(k) \sim I_0(k)(N+N(N-1)f(k)) \]

- \(\lambda_u = 1.5 \text{ cm} \)
- \(\varepsilon_n = 1 \pi \text{ mm mrad} \)
- \(\tau_e = 10 \text{ fs} \)
- \(Q = 100 - 200 \text{ pC} \)
- \(I = 25 \text{ kA} \)
- \(\delta \gamma/\gamma < 1\% \)

FEL: Brilliance 5 – 7 orders of magnitude larger
The Scottish Centre for the Application of Plasma Based Accelerators: SCAPA

1000 m² laboratory space: 200-300 TW laser and 10 “beam lines” producing particles and radiation sources for applications: nuclear physics, health sciences, plasma physics, homeland security etc.
ALPHA-X project

Strathclyde (students and staff):

Team: Dino Jaroszynski, Salima Abu-Azoum, Maria-Pia Anania, Constantin Aniculaesei, Rodolfo Bonifacio, Enrico Brunetti, Sijia Chen, Silvia Cipiccia, David Clark, Bernhard Ersfeld, John Farmer, David Grant, Ranaul Islam, Riju Issac, Yevgen Kravets, Tom McCanny, Grace Manahan, Adam Noble, Guarav Raj, Richard Shanks, Anna Subiel, Xue Yang, Gregory Vieux, Gregor Welsh and Mark Wiggins

Collaborators: Gordon Rob, Brian McNeil, Ken Ledingham and Paul McKenna

ALPHA-X: Current and past collaborators:

Current Support:

EPSRC, E.U. Laserlab, STFC
FIN
Thank you