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The laser plasma interaction (LPI) problem
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• Consider intense short laser pulse:
relativistic, a > 1 or I t 1018 W/cm2 for 1 µm light

• Initial coupling to relativistic electrons (hot electrons)
• Energetic electrons

– Carry energy into/through material
– Lose energy to ions
– Lose energy to radiation
– Drives cold return current

• Heated material then expands/explodes at later times

PIC Simulation; Gremillet, et. al, POP 9, 941 (2002) 



The role of numerical simulations

4
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Experiment: The final arbiter, but…
• How are experiments designed?
• Diagnostics tend to be indirect measures

(eg. Ka or CTR for the hot electron distribution)
• Diagnostics tend to be time-integrated
• Exp. apparatus can be difficult to characterize

Theory: Have fundamental motion eqns. but...
• We can’t solve them in full
• Less trivially, its difficult to identify useful regimes 

where approximations are accurate
• Some of our most interesting questions lie in very messy 

regimes (eg. xray opacity in stellar interiors)

Simulations: Complementary
• Model (proposed) experiments including synthetic diags.
• Can examine predictions of theory under ideal 

conditions as simplified test (compared to experiment)
• Can explore situations for which there is no good theory



Goals
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• Provide introduction to PIC
• Learn what it can do and the compromises that are often made
• Become critical readers of the literature
• Facilitate your entry to PIC modeling, should you need or wish to try it

Two classic texts that are good for getting started and for reference:
• C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer 

Simulation, Taylor & Francis, New York (2005);
ISBN-13: 978-0750310253

• R. W. Hockney and J. W. Eastwood, Computer Simulation Using 
Particles, McGraw-Hill, New York (1981);
ISBN-13: 978-0070291089

A number of PIC codes are now available for use at no cost. Here is a popular one:
• EPOCH https://ccpforge.cse.rl.ac.uk/gf/project/epoch/

(registration required, switching to a new site)
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Equations of motion: Maxwell eqns. and Lorentz force law
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• Evaluated for all particles

• Fields evaluated over all space and time
• Time evolution is due to currents and changing fields

• General for non-quantum mechanical systems; fully relativistic.
• Ionization, recombination, scattering, material resistivity, opacity and similar are often 

important and then must be introduced, but we neglect for now.
• Electrostatic case (so non-relativistic): 

only	ߘ ∙ E ൌ ஡
ఌ೚

or ߘଶ߶ ൌ ஡
ఌ೚

and డ୮
డ୲
ൌ ܧݍ	 required

ߘ ൈ B ൌ μ୭	J ൅ μ୭ε୭
߲E
߲t

ߘ ∙ B ൌ 0

ߘ ൈ E ൌ െ
߲B
߲t

dp
dt ൌ ܧሺݍ	 ൅ ݒ ൈ ሻܤ

ߘ ∙ E ൌ
ρ
௢ߝ

Consider electrostatic case and a fully ionized copper plasma with 10 µm x 10 µm x 100 µm.
m ≈ 0.90 g or Nmol ≈ 14 nmol so Nion ≈ 9x1015 ions and Ne = Z Nion with Z = 28.
Number of force pair calculations for electrons alone is roughly Ne

2 ≈ 1034.
At 1 calc/cycle and 1000 3 GHz processors, that would take roughly 1015 years.



Discretization of the fields (PIC)
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charges fields charges

PIC discretizes field evolution at the nodes of cells leaving 
particle position continuous.

The equations of motion are local so, to update the fields, we 
need the currents carried by the particles represented at the 
nodes and vice versa.

This suggests the following PIC cycle:

Cell Nodes

For N particles and M grid points
Cast to the grid ~ N/M * M = N
Advance fields ~ M
Interpolate and push particles ~ N



Macroparticles (PIC)
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We represent the true population of a species s (electrons, Cu+, …) using macroparticles: 
q = w qs and m = w ms where w is the “particle weight”, a positive integer.

q/m = qs/ms and so, the eqns. of motion are preserved.݀ݒߛԦ
ݐ݀ ൌ 	

ݍ
݉ ሺܧ ൅ ݒ ൈ ሻܤ

w is often large, 1010 or higher, and the number of macroparticles used does not generally 
exceed several billion. In fact, it is frequently much less.

The use of macroparticles is effectively a sampling of phasespace.
The initial macroparticle weight can even vary with position or change dynamically.

Cu
Al

x

p

x

p



Dimensionality
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We often restrict dimensionality out of computational necessity.
This might be justified depending on the problem symmetry or, more simply,
we might be willing to accept the loss in realism in order to get a result.

Is the behavior here 
essentially 2D or 
even 1D?

Example from electrostatics: a “point” charge in 2D:

߶ଶߘ ൌ
ߩ
௢ߝ
ൌ 	 ߜߣ௢ߝ Ԧݔ ൌ ሻݕሺߜሻݔሺߜߣ௢ߝ ߶ ൌ െ

ߣ
௢ߝߨ2

݈݊ Ԧݔ

ܧ ൌ
ߣ

௢ߝߨ2
1
Ԧݔ

x

y

x



More on working in restricted dimensions
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x

y

r

z

And similarly for other possibilities (r, q) or coordinate systems (spherical).
Not all possibilities are implemented by all (or even any) PIC codes, but some are.
For close range interactions, this may not matter, but at long range it will.

Cartesian Cylindrical

1D3V, 2D3V or 2½D 
Working in restricted dimension means we will not evaluate the appropriate spatial derivatives.
Vectors can retain all degrees of freedom, however: 
Again, note geometric effects of field variation with distance :

,Ԧ݌ ,Ԧܬ ,ܧ ܤ

This means we can still have self-consistent, self-propagating EM waves in 1D3V and 2D3V,
but not in all coordinate systems (eg. Cartesian (x, xy) not cylindrical (z, rz)).

Ԧܬ

ܤ

Ԧܬ

3D
2D3V

(xy)
Ԧܬ

ܤ



PIC Cycle (time step) ö Implementation
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ߘ ൈ B ൌ μ୭	J ൅ μ୭ε୭
߲E
߲t

ߘ ൈ E ൌ െ
߲B
߲t

dp
dt ൌ ܧሺݍ	 ൅ ݒ ൈ ሻܤ

xj xj+1xj xj+1

Notation (this figure only)
i ö particle
j ö node



Weighting – Nearest Grid Point (0th order)
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xj xj+1 xj+2 xj+3 xj+4

Interparticle spacing (cells)
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Electrostatic force with one particle at a node

Translational invariance is lost

Shape function S

Noisy…

PIC achieves Debye shielding (long range effect) without using a large number of particles.



Weighting – Cloud-in-Cell (1st order)
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௝ݍ ൌ ݍ ௝ܺାଵ െ ௜ݔ
∆ܺ

௝ାଵݍ ൌ ݍ
௜ݔ െ ௝ܺ

∆ܺ

To eliminate self-forces, you 
interpolate the fields using the 
same weighting as the particles

௜ܧ ൌ
௝ܺାଵ െ ௜ݔ
∆ܺ ௝ܧ ൅

௜ݔ െ ௝ܺ

∆ܺ ௝ାଵܧ

Higher order schemes are used. More on the effect of this later.



Generalization to 2D using areas (or 3D using volumes)
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DX

DY

i,j

Aij

ܵ Ԧ௣ݔ െ ܺ௜௝ ൌ
௜௝ܣ

∆ܺ	∆ܻ

෍ܵ Ԧ௣ݔ െ ௜ܺ௝
௜,௝

ൌ 1

Let’s consider the total system momentum: ܲ
For simplicity, consider 1D electrostatic 
problem, so working with charge densities and 
E-fields:

௜ߩ ൌ
1
Δݔ෍ݍ௣

௣

ܵ Ԧ௣ݔ െ ௜ܺ

௣ܧ ൌ෍ܧ௜
௜

ܵ Ԧ௣ݔ െ ௜ܺ

݀ܲ
ݐ݀ ൌ෍ݍ௣

௣

௣ܧ ൌ෍ݍ௣
௣

෍ܧ௜
௜

ܵ Ԧ௣ݔ െ ௜ܺ

݀ܲ
ݐ݀ ൌ Δݔ෍ߩ௜	ܧ௜

௜,௝

݀ܲ
ݐ݀ ൌ 0

For periodic boundary conditions 
but not for conducting boundaries.



PIC Cycle (time step) ö Implementation
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ߘ ൈ B ൌ μ୭	J ൅ μ୭ε୭
߲E
߲t

ߘ ൈ E ൌ െ
߲B
߲t

dp
dt ൌ ܧሺݍ	 ൅ ݒ ൈ ሻܤ

xj xj+1xj xj+1

Notation (this figure only)
i ö particle
j ö node



From differential equations of motion to difference equations
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ݑ݀
ݐ݀ ൌ െܽݑ

Consider a simple example before we turn to our equations of motion:

Let a > 0 and uo = u(0) be the initial condition.  (u(t) = uo e-at)

ݑ∆
ݐ∆ ൎ െܽݑ with time discretized as t = nΔt so u(t) = u(nΔt) ≡ un. 

There is no unique interpretation of this equation, however. Here are two versions:

௡ାଵݑ െ ௡ݑ
ݐ∆ ൌ െܽݑ௡

Explicit Implicit

௡ାଵݑ ൌ 1 െ ݐ∆ܽ ௡ݑ

With solution at time t:
௡ݑ ൌ 1 െ ݐ∆ܽ ௡	ݑ௢

This turns out to be inefficient, but it will 
work unless (1 - a Dt) < -1 which diverges.
un should always be finite.

We require: Dt < 2/a
Note this is a stability issue.
Accuracy is still yet another matter.

௡ାଵݑ െ ௡ݑ
ݐ∆ ൌ െܽݑ௡ାଵ

This is unconditionally stable for any value of 
Δt. We are now free to pick Δt for accuracy.
When solving non-trivial equations of motion, 
implicit solutions tend to be more complicated 
and require more computation time than explicit 
solutions.

௡ାଵݑ ൌ /௡ݑ 1 ൅ ݐ∆ܽ

With solution at time t:

௡ݑ ൌ
1

1 ൅ ݐ∆ܽ ௡	ݑ௢



Boris Particle Pusher
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dp
dt ൌ ܧሺݍ	 ൅ ݒ ൈ ሻܤ

Use time-centered or “leapfrog” scheme:
• E and B evaluated at integer timesteps (En and Bn)
• p is evaluated at half-integer time steps (pn-½ and pn+½)

(Accuracy goes as (Dt)2 rather than (Dt).)

How should we apply the “push” from the E and B fields?
• Apply ½ of the E push
• Apply B (which acts as a pure rotation of the momentum vector)
• Apply remaining ½ of E push

Ԧି݌ ൌ Ԧ௡ିଵ/ଶ݌	 ൅
1
ܧݍ	ݐ∆2

௡

Ԧା݌ ൌ Ԧି݌	 ൅ ݍ	ݐ∆
Ԧା݌ ൅ Ԧି݌

	2 ൈ ௡ܤ

Ԧ௡ାଵ/ଶ݌ ൌ Ԧା݌	 ൅
1
ܧݍ	ݐ∆2

௡

The cross-product is cast in a form that 
is efficient to evaluate and may involve 
approximations such as Taylor series 
expansion of required trig functions.

Ԧ௡ାଵݔ ൌ Ԧ௡ݔ ൅
Ԧ௡ାଵ/ଶ݌

௡ାଵ/ଶߛ
Δݐ J. Boris, “Relativistic plasma simulation-optimization of a hybrid code”, 

Proceedings of the 4th Conference on Numerical Simulation of Plasmas. 
Naval Res. Lab., Washington, D.C., pages 3–67, 1970.

Ԧ݌∆ ൌ ܧሺݍ	ݐ∆ ൅ ݒ ൈ ሻܤ

n-1 n

n-½ n+½

for: E,B

for: p



Field Advance
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߲E
߲t ൌ

1
μ୭ε୭

ߘ ൈ B െ
1
௢ߝ
	J

߲B
߲t ൌ െߘ ൈ E

Now we require spatial derivatives of the fields so, analogous to the leap frog approach, it is 
common to define E & J and B using different but interleaved spatial grids.  For the time 
derivitives:

n-1 n

n-½ n+½

for: x, E

for: p, B,J

௫|௜,௝ାଵଶ,௞ାܤ
ଵ
ଶ

௡ାଵ െ ௫|௜,௝ାଵଶ,௞ାܤ
ଵ
ଶ

௡

Δݐ ൌ
|௬ܧ

௜,௝ାଵଶ,௞ାଵ

௡ାଵଶ െ |௬ܧ
௜,௝ାଵଶ,௞

௡ାଵଶ

Δz െ
|௭ܧ

௜,௝ାଵ,௞ାଵଶ

௡ାଵଶ െ |௭ܧ
௜,௝,௞ାଵଶ

௡ାଵଶ

Δy
and similarly for the other components and for E.

ߘ ∙ B ൌ 0

ߘ ∙ E ൌ
ρ
௢ߝ

We require these be satisfied as initial conditions, perhaps using a static 
field solver initially if necessary.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's
equations in isotropic media”, IEEE Transactions on Antennas and Propagation 14, 302 (1966). 
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Constraints on time step, cell size, particle count
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• Stability. Small errors will occur because we are using difference equations, inevitability of 
numerical error and often other approximations. Will these errors grow?

• Accuracy. How well are the equations of motion solved? A simple error comes from 
undersampling an important physical process.

A sine wave of frequency f and the result of sampling it at f, 4f/3, 2f.

H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Trans. of the Amer. Inst. of Elec. Eng. 47, 617-644 (1928).



Effect of the grid
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We’ve noted the loss of translational invariance, already.
There are effects analogous to those of a crystal lattice and an analysis in k-space is indicated.

ߩ ݇ ≡ ௝݁ି௞௫ߩ෍ݔ∆
௝

for the grid node charge density in 1D.

The rj are determined by the macroparticle positions, weights and shape function S(x-xj).

ߩ ݇ ൌ q෍ܵ ݇௣ ݊ሺ݇௣ሻ
௣

where n(x) is the particle number density and kp = k – kg.
kg = 2p/Dx is the grid wavenumber.

The grid density at k is coupled to n(k), but also to other kp depending on the width of S(kp).
A shape function with a large enough extent in x will have a narrow distribution in k-space, 
effectively truncating the sum to the first Brillouin Zone and yielding: r(k) = q n(k) 

This modifies the vacuum plasma dielectric constant and dispersion relations from 
their usual expressions: 

߳ ൌ 1 െ
߱௣ଶ

߱ଶ

߱ଶ ൌ ݇ଶܿଶ ൅ ߱௣ଶ



Courant Condition
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If we try to represent an EM planewave on the grid:

ܧ ,Ԧݔ ݐ ൌ ݌ݔ݁	௢ܧ ݅ ݇ ∙ Ԧݔ െ ݐ߱

ܤ ,Ԧݔ ݐ ൌ ݌ݔ݁	௢ܤ ݅ ݇ ∙ Ԧݔ െ ݐ߱

The usual relations from the Maxwell curl equations become modified on the grid:

ܤ߱ ൌ ݇ ൈ ܧ

ܧ߱ ൌ െ݇ ൈ ܤ

Ωܤ ൌ Ԧߢ ൈ ܧ

Ωܧ ൌ െߢԦ ൈ ܤ

Ω ൌ ω
sin߱Δ2/ݐ
߱Δ2/ݐ ௫ߢ ൌ ݇௫

sin ݇௫Δ2/ݔ
݇௫Δ2/ݔ

Where:

etc.

Ωଶ ൌ ܿଶߢଶEliminating E and B:

sin߱Δ2ݐ
ܿΔݐ

ଶ

ൌ
sin ݇௫Δ2ݔ
Δݔ

ଶ

൅
sin

݇௬Δݕ
2

Δݕ

ଶ

൅
sin ݇௭Δ2ݖ
Δݖ

ଶ

Dt is the time step
Dx, etc. are the cell sizes

For real w, we require:
1
ܿΔݐ

ଶ

൐
1
Δݔ

ଶ

൅
1
Δݕ

ଶ

൅
1
Δݖ

ଶ
This imposes a maximum time step such that
the light must not cross a cell in one step.

(instead of w2 = c2 k2)



Courant Condition
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sin߱Δ2ݐ
ܿΔݐ

ଶ

ൌ
sin ݇௫Δ2ݔ
Δݔ

ଶ

Vacuum dispersion solution of Maxell’s equations for propagation along x.

Birdsall and Langdon, 15-3, p. 355, Fig. 15-3a.

vp < c

Relativistic particle can 
produce Cerenkov 
emission here



More constraints on the time step
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Possible relevant frequency (time) scales include
• laser carrier (and harmonics might be present)

Must resolve l
Courant condition applies: Dt < Dx/c
But, also, grid dispersion

• plasma frequency
Not resolving this is inaccurate but, worse, there can also be stability issues.

• Cyclotron frequency
Similar

A.B. Langdon, J. Comp. Physics 30, 202 (1979)

݌ݔ݁ െ݅߱௤ݐ௡ ൌ exp െ݅߱ݐ௡ ൅ ݍ݅ ଶగ
∆௧
௡ݐ	 ൌ exp	ሺെ݅߱ݐ௡) for aliases wq of w; n,q integers.

Langdon (and others) found a stability requirement that applies to explicit finite difference 
schemes in the particle pusher. The instability is related to temporal aliasing analogous to the 
spatial effect we just looked at:

߱௣∆ݐ ൑ 2For small perturbations in a cold plasma:

or w in the dispersion relation becomes imaginary: ߱ ൌ ݇ ∙ Ԧݒ േ
2
Δݐ sin

ିଵ ߱௣Δݐ
2

Recall: ߱௣ ൌ ݊݁ଶ ߳௢݉ൗ



Heating instability
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Recall:

ߩ ݇ ൌ q෍ܵ ݇௣ ݊ሺ݇௣ሻ
௣

where n(x) is the particle number density and kp = k – kg.
kg = 2p/Dx is the grid wavenumber.

• n(x) determined particle positions and can have large extent in k-space
• r (or J) is what interacts with the fields and r(k) will couple to E(k).

݃ ݔ ൌ
1

ߪ ߨ2
	ex݌ െ

ଶݔ

ଶߪ2 		⟺ ܩ		 ݇ ൌ ݌ݔ݁ െ
݇ଶߪଶ

2Recall from FT:

n(x) = pure sinusoid fl r(k) still has many kp (unless filtered by S) fl feeds back to n(x)
n(x) perturbations with kDx > p contribute to r for kDx < p
because k’s differing by kg look the same on the grid.

• S(x) that is large in extent will have narrow S(kp)

The real part of the dielectric function need not be sensitive to the aliasing.
The imaginary part can actually change sign due to kp with opposite sing of k.
Essentially, Landau damping becomes poor for components with large kp yielding instability.

A rule of thumb is: Dx > 2-3 lD to avoid this for 1st order weighting



Noise
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We’ve seen that the weighting scheme 
(choice of S) effects noise.

Birdsall and Langdon, p. 363, Fig. 15-8a.

Current impulse from a slow charge 
from three weighting approaches.

Noise spectra fall off as w0, w-1, w-2.

It can also be shown for a plasma wave:

݁Φ
௘ܶ ௧௛

ൌ
1
஽ߣ݇ܰ

where N is the number of electron 
macroparticles contributing to the 
wave.

The number of macroparticles also does.
At solid density and 10 macroparticles/cell 
you’ll have 10% of solid density changes 
each time a macroparticle crosses the middle 
of a cell for 0th order weighting.

Phase space statistics are also an issue.
Frequently, this is difficult to determine 
until after the simulation has run.
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Boundary Conditions and adding energy to the simulation
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BC for fields:
• periodic
• absorbing
• conducting

BC for particles:
• periodic
• absorbing
• thermal
All boundary conditions impose restrictions on the simulation, and they may not work well.
EM waves can partially reflect at an absorbing boundary, especially at grazing incidence.

Laser model:

Injection:



Collision models
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Two models for collisions are:
• Binary collision – sampling approach
• Jones algorithm – grid approach

Binary
• cell particles grouped in pairs
• elastic collision in center-of-mass frame
• probability derived from the Spitzer collision rate
• scattering angle q and random azimuthal angle
• transform to lab frame

within 
species between 

species

ߠ݊݅ݏ ൌ
ߜ2

1 ൅ ଶߜ

d is sampled from a 
Gaussian dist. with 
variance:

ଶߜ ൌ
ఉ݊௅Λݍఈݍ
ଷݑ௢ଶ݉ଶ߳ߨ8 Δݐ

Jones
• find momentum and temperature per species per cell
• sample as Maxwell-Boltzman distribution
• scatter each macroparticle

T. Takizuka and H. Abe,  Journal of Computational Physics 25, 205 (1977).
M. E. Jones, D. S. Lemons, R. J. Mason, V. A. Thomas, and D. Winske, Journal of Computational Physics 123, 169 (1996)

coll



Multiprocessing (High Performance Computing)
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Each processor is assigned part of the grid.
It “owns” the nodes and particles that happen to be in its domain.

The solution to the field equations requires knowing the fields of nearest neighbors.
Similarly, interpolation to the particles. Note form of equations (using electrostatic eqns):

߶ଶߘ ൌ െ
ߩ
߳௢

߶௝ିଵ െ 2߶௝ ൅ ߶௝ାଵ
ሺ∆ݔሻଶ ൌ െ

௝ߩ
߳௢

८߶ത ൌ െ
ሺݔߘሻଶ

߳௢
ߩ̅

Communication via some protocol, for example, MPI.



Diagnostics
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Consider
A 2D 100 mm x 100 mm grid with 20 cells per mm = 4x106 cells
50 macroparticles/cell (of all species) in ½ the cells initially = 1x108 particles
2 ps of simulation time with 0.13 fs time steps (T/20 @ 800 nm) = 15,000 time steps
(these numbers are conservative, simulations much larger than this are routine)

Space assuming single precision dump for 1 time step
Fields – 6 components = ~90 MB
Particles – 5 element phase space = 2 GB

Must restrict the output
• Only periodic or selected dump times
• Reduced spatial resolution, particle sampling/particle tagging
• Only the field components or phase space elements needed
• Use reduced measures
 temperature, density, phase space map instead of particles
 extraction plane or border
 tracer particles

Diagnostic outputs (perhaps once per time step or few time steps)
• measures of energy (total, particle, field, non-conservation)
• measures of behavior (maximum plasma frequency, collision rates)
• measure of processor performance (time spent on different tasks)



There are important issues I haven’t mentioned
and many different kinds of PIC
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Varieties of PIC
• Electrostatic PIC
• Electromagnetic PIC
• Gravitational PIC
• Implicit solvers
• Hybrid codes incorporating fluid models
• Other variations

o Incorporation of Ohm’s Law directly (not via collisions)
o PIC combined with other solvers by region or dimension
o Hydro codes that incorporate PIC

• Current correction
• Damping and filtering
• Sub-cycling
• Sub-gridding
• Particle management
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Modeling real experiments
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Assume we want to model a laser and not use an injection. Assume a solid target.
Some choice of dimensionality is made based on the problem and computing resources.

What spatial scales need to be
resolved on physical grounds?
• wavelength
• Debye length
• skin depth (c/wp)
• target thickness
• target surface structure

Temporal/frequency scales?
• pulse carrier (harmonics?)
• plasma frequency
• cyclotron frequency

Size of grid needed and 
duration of simulation?
• size of target
• vacuum border or 

support structures
• pulse length
• particle travel times

Order of magnitude:
• l: 1 µm
• target dimensions: 10 nm to 1 mm

(can go to cm; gas targets tend to be bigger)
• pulse, travel: fs to nm



Pre-pulse and pre-plasma and the LPI
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Interferogram from Daniel Hey 
(thesis).

Irradiation by 0.8 J, 120 ps Ti:Sapphire laser with I = ~1012 W/cm2, 
derived from measured interferograms. Grava et al, PRE 78, 016403 
(2008).

PIC simulations for 110 fs, 1019 W/cm2
, Gaussian spatial 

profile pulse incident on singly charged ion.
(Schumacher et al, POP 18, 013102 (2011).

L = 3 m 

By
[gauss]

݊௖ ൌ
௢݉ߝ
݁ଶ ߱௅

ଶ



2D and 1D LPI
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Polarization: linear, elliptical, circular can be supported in 1D, 2D, 3D but this is 
problematic for anything other than 3D.

2D3V and linear polarization: in-plane or out-of-plane? 

ܧ݇ ݇

ܧ

Charges can accelerate in any direction, but they can’t move in the virtual direction.
This exaggerates or diminishes many effects.

Y. Sentoku, et al., “High energy 
proton acceleration in interaction of 
short laser pulse with dense plasma 
target”, Physics of Plasmas 10,
2009 (2003).



Numerical choices
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Basic constraints:
• Debye length: Dx < 3 lD
• Plasma frequency: wpDt < 2
• Courant Condition: cDt < Dx

(but also dispersion constraints)

But these can be mitigated:
• Debye length: run at high T or low n,  use large particle shape, energy conserving algorithms
• Plasma frequency: run at low n
• implicit solvers can relax all of these constraints
• instabilities have growth times – perhaps your simulation will finish soon enough

஽ߣ ൌ
߳௢݇ܶ

݊݁ଶൗ

߱௣ ൌ ݊݁ଶ ߳௢݉ൗ

Convergence tests:
• time step
• spatial resolution
• particle count

Speed-ups (usually with consequences):
• variable time step
• varying or variable grid
• variable macroparticle count
• restricted grid dimension, simulation duration or dimensionality
• more processors (no adverse consequences for the simulation, but costly and saturates)



Outline

1. Goals, Scope and Motivation
2. Particle-in-cell Method 
3. Case Studies

a) Petawatt laser pulses and overdense plasmas
b) Relativistic Kelvin-Helmholtz instability
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Kemp and Divol, PRL 109, 195005 (2012)
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Petawatt laser pulses and overdense plasmas
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The pre-plasma profile reshapes 
dramatically over ~3 ps. The classical 
critical surface moves significantly.

This changes hot electron generation 
correspondingly, so there is no one “Thot”.



Kelvin-Helmholtz Instability
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https://en.wikipedia.org/wiki/Kelvin-Helmholtz_instability

http://hmf.enseeiht.fr/travaux/CD0001/travaux/optmfn/hi/01pa/hyb72/kh/anim2.htm

Animation of two immiscible fluids, with the faster stream on top, both flowing to the right.

A fundamental instability in plasmas first observed in 
ordinary fluids. It requires a shear between two fluids 
(or within the same fluid).

In a plasma, shear forces give rise to filaments that 
amplify a magnetic field that enhances the 
perturbation. This can lead to a periodic density and 
field modulation along the interface.

This occurs in astrophysical environments when a relativistic jet passes through a background 
plasma. The emitted radiation by the plasma electrons is a primary diagnostic.



Simulations using PIConGPU
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3D Grid: 480 x 46 x 46 skin depths
Simulation volume: 8000 x 768 x 768 cells
Particles: 8 protons and 8 electrons / cell (75 billion particles)
Time steps: 2000 (62 1/wp in duration)
Resolution: 0.06 skin depths (wp/c)

Radiation calculated (energy per unit solid angle and frequency) using LW 
potentials.

Yee solver, Boris pusher, TSC shape function (2nd order with continuous 
value and 1st derivitive. See Hockney and Eastwood, p 311), periodic 
boundary conditions in all dimensions.

Magnetic fields (blue,red)
Electron density projection (yellow)
Radiation emitted (projection on sphere)

(in rest frame of streams)

>7 PFLOPs (double precision) 
running on 18,000 nodes.
About 17-19 s per time step.



Radiation sources
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Colors distinguish electron acceleration, or the change in an electron’s speed and direction, occurring in passing plasma 
streams. Red indicates large electron acceleration leading to strong radiation emission. Visualization by Dave Pugmire, ORNL. 
https://www.olcf.ornl.gov/2013/11/11/simulations-of-plasma-turbulence-model-the-inner-workings-of-cosmic-phenomenon/



Radiation
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