

Peter G. Thirolf, LMU Munich

Exploit the unique properties of dense laser-driven ion beams for nuclear astrophysics

Outline:

- motivation: astrophysical nucleosynthesis of heavy elements
 - \rightarrow r process
 - → waiting point N=126
- Iaser ion acceleration: TNSA vs. RPA
- ultra-dense laser-accelerated (heavy) ion beams
 - → novel nuclear reaction mechanism: ,fission-fusion'
- experimental realization:
 - → proposed realization stages at ELI-NP
 - → sites for exploratory studies: CALA/Garching, CETAL/Magurele

Peter G. Thirolf, LMU München

"The 11 Greatest Unanswered Questions of Physics":

- (US National Research Council's Board on Physics and Astronomy)
- 1. What is Dark matter ?
- 2. What is Dark Energy ?
- 3. How were the Heavy Elements from Iron to Uranium made ?
- 4. What is the mass of the neutrino ?
- 5. Where do the ultrahigh-energy particles come from ?
- 6. Is a new theory of light and matter needed to explain what happens at very high energies and temperatures ?
- 7. Are there new states of matter at ultrahigh temperatures and densities ?
- 8. Are protons unstable ?
- 9. What is gravity ?
- 10. Are there additional dimensions ?
- 11. How did the Universe begin ?

Peter G. Thirolf, LMU München

Peter G. Thirolf, LMU München

<u>Astrophysical r-Process Scenarios</u> MLL

- physical conditions:
 - temperature ~1•10⁹ K
 - neutron density > $1 \cdot 10^{24}$ cm⁻³
 - neutron-to-seed ratio must be high (~ 100): scenario ??
- (i) (core collapse) supernovae
 - $-m > 9 m_{solar}$, implosion of Fe core (> 1.4 m_{solar})
 - reverse β decay: $p + e^{-} \rightarrow n + v_{e}$ (n-star formation)
 - halt by neutron degeneracy pressure \rightarrow infall reverted to outward shock wave
 - nucleosynthesis occurs in v-driven winds
 - but: v wind depletes neutron flux

(ii) neutron star mergers (10⁻⁵/yr/galaxy)

- decompression of ejected neutron star material

Iron core Veutron sta

Type II Supernova

5

Nucleosynthesis of Heavy Elements

- modelling the r process path (far in 'terra incognita'):
- masses and lifetimes needed for ~ 1000 neutron-rich isotopes
- measured masses, lifetimes required for model testing

Nuclear Physics

<u>r process: waiting point N=126</u>

waiting point N=126:

- bottleneck for nucleosynthesis of actinides
- last region of r process 'close' to stability
- ~ 15 neutrons away from last known isotope

Peter G. Thirolf, LMU München

Nuclear Physics

Nuclear Mass Model Predictions

\rightarrow exp. data needed for extremely neutron-rich isotopes !

LMU

MLL

Radioactive Beam Facilities

→ can laser-driven ion acceleration contribute ?

Peter G. Thirolf, LMU München

Laser-Ion Acceleration

Target Normal Sheath Acceleration (TNSA)

thick targets (~µm)

$$E_{
m ion} \propto \sqrt{I_{Laser}}$$

L. Robson et al., Nature Physics 3, 58 (2007) Peter G. Thirolf, LMU München

(RPA) Laser (circ. pol.) lons Electrons Target thin targets (~ nm) $E_{\rm ion} \propto I_{\rm Laser}$

Radiation Pressure Acceleration

A. Henig et al., PRL 103 (2009) 245003

- RPA dominates for high intensities over TNSA (I \geq 10²²-10²³ W/cm²)
- excellent longitudinal emittance possible: $\Delta E \Delta t \sim 10 \text{ MeV} * 5 \text{ fs} \sim 5.10^{-8} \text{ eV} \text{ s}$
- extremely short pulse duration: foil thickness/c : 30 nm ≈ 100 attoseconds

courtesy: M. Zepf

11

Peter G. Thirolf, LMU München

LMU RPA: Hole-Boring vs. Light Sail Regime MLL Nuclear Physics

Iight sail regime:

- the target is sufficiently thin for the laser pulse to punch through the target and accelerate a slab of plasma as a single object

- 'cold' compression of electron sheet, followed by electron breakout
- dipole field between electrons and ions
- ions + electrons accelerated as neutral bunch (avoid Coulomb explosion)
- solid-state density: 10²² 10²³ e/cm³
 'classical' bunches: 10⁸ e/cm³

\rightarrow ~ 10¹⁴ x density of conventionally accelerated ion beams

Peter G. Thirolf, LMU München

achievable ion energy:

conversion efficiency:

accelerated ions:

 $E_i = E_u \cdot A = 2m_i c^2 \Xi / (1 + 2\sqrt{\Xi})$ E_u : ion energy/nucleon

 $\chi = 2\sqrt{\Xi}/(1+2\sqrt{\Xi})$

ions:

 $N_i E_i = \chi W_L$

 W_l : laser pulse energy

acceleration of ²³²Th ions to ~7 MeV/u with $\lambda_L = 0.8$ mm: laser intensity $I_L = 1.2 \cdot 10^{23}$ W/cm² ($a_L = 167$, circular polarized) $\Rightarrow \Xi = 3.8 \cdot 10^{-3}$, $\chi = 11\%$ focal spotsize A_F: $W_L = I_L \cdot A_F \cdot t_L$ assume $W_L = 300$ J, $t_L = 32$ fs: $\Rightarrow A_F = 7.1 \ \mu m^2$ (3 μm diameter)

CH₂ ~ 70 μm

- CD₂: light ions induce Th target fission
- CH₂: induce fission of Th beam
 - decelerate (beam-like) fission fragments for optimum fusion

D. Habs, PT et al., Appl. Phys. B 103, 471 (2011)

Peter G. Thirolf, LMU München

LMU Fission Stage of Reaction Scheme

beam (~ 7 MeV/u): d, C, ²³²Th target: p, C, ²³²Th

²³²Th + p, C \rightarrow F_L + F_H: beam-like fission fragments d, C + ²³²Th \rightarrow F_L + F_H: target-like fission fragments

- (geometric) fission cross section estimate:

- fission mass distribution:

Peter G. Thirolf, LMU München

²³²Th:

 $\begin{array}{l} <\mathsf{A}_{\mathsf{L}>} \sim 91, \ \Delta\mathsf{A}_{\mathsf{L}} \sim 14 \ \text{amu} \ (\mathsf{FWHM}) \\ & \Delta\mathsf{A}_{\mathsf{L}} \sim 22 \ \text{amu} \ (\text{at 10\% of max. yield}) \\ <\!\! Z_{\mathsf{L}}\!\! > \sim 37.5 \ (\mathsf{Rb},\mathsf{Sr}) \end{array}$

deep-inelastic neutron transfer towards fissioning Th (N=146)

Fusion Stage of Reaction Scheme MLL

conventional radioactive ion beam facilities:

 \rightarrow intense, low-density ion beam + stable target

here: light fission fragments of beam + light fission fragments of target

- $-F_{H} + F_{H} \rightarrow$ unstable : (search for superheavy species ??)
- $F_L + F_L \rightarrow <^{A}Z > ≈ ¹⁸²75 : nuclei close to N=126 waiting point$ $F_L + F_H \rightarrow ²³²Th : original nuclei$
- fusion-evaporation calculations (PACE4 code):

(Z=35, A=102) + (Z=35, A=102): $E_{lab} = 270 \text{ MeV} (E^* = 65 \text{ MeV})$ ¹⁹⁰Yb (Z=70,N=126): 2.1 mb ¹⁸⁹Yb (N=125): 15.8 mb ¹⁸⁸Yb (N=124): 61.7 mb ¹⁸⁷Yb (N=123): 55.6 mb

LMU <u>Collective Stopping Power Reduction (?)((()</u> Eli MLL Nuclear Physics

- reduction of atomic stopping power for ultra-dense ion bunches:
 - plasma wavelength (~ 5 nm) « bunch length (~560 nm):
 - \rightarrow collective effects cancel: only binary collisions contribute
 - dense ion bunch: considered as ~1700 atomic layers with ~3Å distances
 - "snowplough effect": first layers of ion bunch remove electrons of target foil
 - predominant part of bunch: screened from electrons (n_e reduced)
 - \rightarrow reduction of dE/dx : avoids ion deceleration below V_c:
 - \rightarrow would allow for thick reaction targets for fusion reactions
 - \rightarrow theoretical calculations & experimental data needed

Peter G. Thirolf, LMU München

Peter G. Thirolf, LMU München

<u> Fission-Fusion Yield / Laser Pulse</u>

laser acceleration (300 J, ε ~10%):	normal stopping	reduced stopping
²³² Th : C : protons :	1.2 · 10 ¹¹ 1.4 · 10 ¹¹ 2.8 · 10 ¹¹	1.2 · 10 ¹¹ 1.4 · 10 ¹¹ 2.8 · 10 ¹¹
beam-like light fragments	3.7 · 10 ⁸	1.2 · 10 ¹¹
target-like light fragments	3.2 · 10 ⁶	1.2 · 10 ¹¹
fusion probability $F_L(beam) + F_L (target)$	1.8 · 10 ⁻⁴	1.8 · 10 ⁻⁴
neutron-rich fusion products (A≈ 180-190)	1.5	4 · 10 ⁴

 laser development in progress: diode-pumped high-power lasers: increase of repetition rate expected

MII

"conventional" fusion reaction:

cross sections: transfer (theor.) vs. fragmentation (GSI experiment)

Peter G. Thirolf, LMU München

Towards N=126 Waiting Point

23

r process path:

- known isotopes ~15 neutrons away from r process path (Z≈ 70)

measure:

- masses, lifetimes, structure
- β -delayed n emission prob. $P_{\nu,n}$
- lifetime measurements: already with few pps

visions:

- test predictions: r process
 branch to long-lived (~ 10⁹ a)
 superheavies (Z≥110)
- \rightarrow search in nature ?
- nuclei improve formation predictions for U, Th
 - recycling of fission fragments in (many) r process loops ?

Staged Experimental Approach

- Develop RPA-based laser ion acceleration of heavy elements:
 - laser-ion acceleration of heavy species: energies, charge states ...
 - optimized target development (multi-layer, repetition rate capability)
 - control of ion energy
- Theoretical consolidation required:
 - 2D/3D simulations for RPA of heavy species
 - robust reaction yield estimates
- Proof-of-Principle experiments:
 - test concept of collective effects on ion beam stopping range
 - perform proof-of-principle experiment for 'fission-fusion' mechanism
 - optimize reaction yields: fission stage, fusion stage
- Physics program:
 - identification of reaction products: decay spectroscopy
 - separation of species of interest: recoil separator
 - measurement of fusion product properties: masses, lifetimes, …

Peter G. Thirolf, LMU München

- 1. separation of reaction products:
 - \rightarrow needs to accept wide range of masses, momenta, charge states
 - → in-flight separation: first stage to measure phase space of reaction products
 - → enables further experimental stages: isotopic separation, access to rare decay modes, experiments with exotic species...

multiple-stage separation for laser-induced exotic nuclei:

courtesy: H. Geissel (GSI/U Giessen)

Separation criteria: (between fusion evaporation residues and large-emittance projectiles):

- magnetic rigidity separation
- velocity separation

<u>Experimental layout</u>

1. separation of reaction products

2. characterization of reaction products

- decay spectroscopy (α, β, γ)

- 2. characterization of reaction productsdecay spectroscopy
- 3. precision mass measurements: e.g. Penning trap or MR-TOF

Peter G. Thirolf, LMU München

MR-TOF

29

<u>Experimental Stages</u>

LMU ELI-NP: E1 experimental area layout

also: 1 PW laser beam (1 Hz) for preparatory studies Peter G. Thirolf, LMU München ELI-NP Summer School, Magurele, September 21-25, 2015

31

LMU Exploratory Studies: CALA (Garching) (() Et al. (Center for Advanced Laser Applications) Nuclear Physics

LMU <u>Exploratory Studies: CALA (Garching)</u> MLL (Center for Advanced Laser Applications) Nuclear Physics August '15 January '15

CALA Lasers and Beamlines

- ATLAS-3000: 60 J, 20 fs, 3 PW, 1 Hz (Ti:Sa)
- PFS-PRO: 0.5 J, 5 fs, 0.1 PW, 5 kHz (OPCPA)

Beamlines	Purpose	Secondary sources	
ETTF	electron acceleration	E _e = 2-5 GeV, 1nC, 1 Hz	E _γ : 0.1 – 10 MeV 10 ⁹ γ/s
LUX	Undulator radiation (perspective: X-FEL)	E _e = 2-5 GeV, 1nC, 1 Hz	E _γ : 1-20 keV
SPECTRE	Thomson scattering	E _e = 100 MeV, 0.05 nC	E _γ : 50-70 keV, 10 ¹⁰ γ/s @ 5 kHz
LION	ion acceleration	p: ≤ 200 MeV C: ≤ 400 MeV/u	
HF (High-Field)	(heavy) ion acceleration	Pb, Th: < 10 MeV/u	~2 [.] 10 ¹⁰ /s

Peter G. Thirolf, LMU München

ELI-NP Summer School, Magurele, September 21-25, 2015

35

Radioactive Beam Facilities

ELI-NP has the potential to appear on the map of radioactive ion beam facilities

Exploiting laser-generated ion beams for nuclear astrophysics:

- Iaser ion acceleration (RPA):
 - generation of ultra-dense ion bunches
 - \rightarrow novel ,fission-fusion' reaction mechanism
 - \rightarrow fusion between 2 neutron-rich fission fragments
 - reduction of electronic stopping ?
 - may lead much closer towards N=126 r-process waiting point
 - R&D program needed for stepwise approach:
 - laser-ion acceleration
 - (collective ?) stopping behaviour
 - target development
 - theory support needed: simulation: 3D RPA, rate assessment
- realization of these schemes:
 - → preparatory studies: CALA (Garching), CETAL (Magurele)
 - → unique contribution to astrophysics possible by laser-driven ion acceleration at ELI-NP

Peter G. Thirolf, LMU München

J. Schreiber (LMU) S. Karsch (LMU) H. Ruhl (LMU) D. Habs (LMU) T. Tajima (IZEST)

- C. Scheidenberger (GSI, Univ. Giessen) H. Geissel (GSI, Univ. Giessen)
- B. Hegelich (UT, Austin)

