Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000						

Fundamental quantum physics in intense laser fields

Anton Ilderton

2015-09-23

ELI-NP summer school

anton.ilderton@chalmers.se

Intro o●oo	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro 0
Links!						

Link to my homepage, (extended) presentation and exercises

https://goo.gl/e1Fl7f

https://sites.google.com/site/antonilderton/

Intro 00●0	QED & processes	SFQED 000	Field models	Pairs 000	Biref . 00000	Outro 0
Outline	2					

• QED

- Processes
- Strong field QED
- Solvable cases
- Examples

Intro 000●	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro 0
Our gr	oup and collal	borators				

Mattias Marklund

Chris Harvey

Arkady Gonoskov

Greger Torgrimsson

Felix Mackenroth

Tom Blackburn

Tom Heinzl Plymouth, UK

Ben King Plymouth, UK

Victor Dinu

Bucharest-Magurele

Stepan Bulanov Ivan Gonoskov Florian Hebenstreit Alexander Sergeev James Vary Jonatan Wårdh Xingbo Zhao

• Field theory: electromagnetic field, electrons, positrons.

$$\mathcal{L} = -rac{1}{4}F^{\mu
u}F_{\mu
u} + \overline{\psi}ig(i\partial\!\!\!/ - mig)\psi + \mathsf{g.f.} - e\overline{\psi}A\psi + \mathsf{counterterms}$$

 ψ : electrons and positrons. A_{μ} : photons. Counterterms remove UV ∞ 's. Regularisation implicit.

Tested to ridiculous precision.

- Describes all 'everyday' physics except gravity.
- Perturbation theory in $\alpha = e^2/(4\pi)$: asymptotic expansion.

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref . 00000	Outro 0
Examp	le: Compton	scattering	g			

• Feynman rules \rightarrow propagators, correlation functions.

• LSZ \rightarrow S-matrix, external leg wavefunctions $u_p e^{-ip.x}$

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro 0
Trees .						

Nonlinear Compton scattering

Nikishov and Ritus, Sov.Phys.JETP 19 (1964) 529 Harvey, Heinzl, Ilderton PRA 79 (2009) 063407 Boca and Florescu, PRA 80 (2009) 053403 Seipt, Kämpfer, PRA 83 (2011) 022101 Mackenroth, Di Piazza, PRA 83 (2011) 032106 Harvey, Heinzl, Ilderton, Marklund PRL 109 (2012) 100402 Dinu, Phys.Rev. A87 (2013) 052101

Stimulated pair production

Nikishov and Ritus, Sov.Phys.JETP 19 (1964) 529 Heinzl, Ilderton, Marklund, Phys.Lett. B692 (2010) 250 Meuren, Keitel and Di Piazza, arXiv:1503.03271 Nousch, Seipt, Kämpfer, Titov. arXiv:1509.01983

Cascades

Fedotov, et al. Phys.Rev.Lett. 105 (2010) 080402 Sokolov et al. Phys.Rev.Lett. 105 (2010) 195005 Elkina et al, Phys. Rev. ST Accel. Beams 14 (2011) 054401 Gonoskov, Ilderton et al., Phys. Rev. Lett. 111 (2013) 060404

Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000	000●0	000		000	00000	O
and	loops					

• Vacuum birefringence

Toll, PhD thesis, 1952 Heinzl et al., Opt.Commun. 267 (2006) 318. Dinu, Heinzl, Ilderton, Marklund, Torgrimmson PRD 89 (2014) 125003 Karbstein, Gies, Reuter, Zepf arXiv:1507.01084

• Photon emission/splitting/scattering

Adler, Annals Phys. 67 (1971) 599 Lundström *et al.*, Phys.Rev.Lett. 96 (2006) 083602 King and Keitel, New J. Phys. 14 (2012) 103002

• Schwinger pair production

Schwinger, Phys. Rev. 82 (1951) 664 Dunne, Gies, Schützhold, PRL 101 (2008) 130404 DiPiazza et al., PRL 103 (2009) 170403 Bulanov et al., PRL 104 (2010) 22040 Gonoskov, Ilderton et al., PRL 113 (2014) 014801

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro 0
QED						

• Field theory: electromagnetic field, electrons, positrons.

$$\mathcal{L} = -rac{1}{4}F^{\mu
u}F_{\mu
u} + \overline{\psi}ig(i\partial\!\!\!/ - mig)\psi + \mathsf{g.f.} - e\overline{\psi}A\!\!/\psi + \mathsf{counterterms}$$

 $\psi:$ electrons and positrons. $A_{\mu}:$ photons. Counterterms remove UV ∞ 's. Regularisation implicit.

• Our interest: a strong background field is present.

Intro	QED & processes	SFQED	Field models	Pairs	Biref .	Outro
0000		●00	000	000	00000	O
When	is a field ''stro	ng''?				

• What do we mean by a strong field?

Intro	QED & processes	SFQED	Field models	Pairs	Biref .	Outro
0000		●00	000	000	00000	0
When	is a field ''stro	ng''?				

- What do we mean by a strong field?
- Field of "typical" strength E, frequency ω :

$$\text{Lorentz} \quad \longrightarrow \quad x'' \sim \frac{eE}{m\omega} x'$$

• Coupling to the external field is

$$\eta = \frac{eE}{m\omega}$$

- Relativistic effects: $\eta > 1 \implies eE\lambda > m$
- Nonlinear/'multiphoton' effects: $\eta > 1 \implies eE\lambda_C > \omega$
- Strong fields $\implies \eta > 1 \implies$ no perturbation in η .

$$\mathcal{L} = -rac{1}{4}F^{\mu
u}F_{\mu
u} + \overline{\psi}ig(i\partial\!\!\!/ - mig)\psi + \mathsf{g.f.} - e\overline{\psi}A\psi + \mathsf{counterterms}$$

 ψ : electrons and positrons. A_{μ} : photons. Counterterms remove UV ∞ 's. Regularisation implicit.

Scattering in background fieldsis scattering between coherent states.

- e.g. Compton: $\langle e(p'), \gamma(k'), C | \hat{S}_{\mathsf{QED}} | e(p), \gamma(k), C \rangle$
 - Same state \implies beam depletion neglected!

• Replacement rule:
$$eA_{\mu} \rightarrow eA_{\mu} + eA_{\mu}^{\text{ext}}$$
.

Intro 0000	QED & processes	SFQED ○○●	Field models	Pairs 000	Biref . 00000	Outro 0
Strong	Field QED					

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \text{g.f.} + \overline{\psi} (i\mathcal{D} - m)\psi$$
$$- e\overline{\psi} \mathcal{A}\psi + \text{counterterms}$$

• $\mathcal{D}_{\mu} = \partial_{\mu} + ieA_{\mu}^{\text{ext}}$: background covariant derivative.

Intro 0000	QED & processes	SFQED ○○●	Field models	Pairs 000	Biref. 00000	Outro 0
Strong	Field QED					

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \text{g.f.} + \overline{\psi} (i\mathcal{D} - m)\psi$$
$$- e\overline{\psi} \mathcal{A}\psi + \text{counterterms}$$

• $\mathcal{D}_{\mu} = \partial_{\mu} + ieA_{\mu}^{\text{ext}}$: background covariant derivative.

• Usual photon propagator.

• Fermion propagator:
$$(i\mathcal{D}-m)^{-1}$$

Exact treatment of η effects. Describes Lorentz force motion

• Vertex: two fermions, one photon as usual.

Quantum emission and recoil contained in vertex

• "Furry picture expansion".

• Monochromatic plane waves.

Nikishov, Ritus, Narozhny 1964

• Pulsed plane waves: finite size effects.

Boca and Florescu, Phys.Rev. A 80 (2009) 053403 Heinzl, Ilderton, Marklund, Phys.Lett. B 692 (2010) 250 Heinzl, Seipt and Kämpfer, Phys.Rev. A 81 (2010) 022125 Mackenroth & Di Piazza, Phys.Rev. A 83 (2011) 032106

Realistic beams

No corresponding exact treatment.

▷ Use plane waves...

$$F_{\mu\nu} \equiv F_{\mu\nu}(k.x) , \qquad k^2 = 0 \qquad k.x \equiv k_+ x^+ \equiv \omega(x^0 + x^3).$$

• 'One dimensional'. Lightfront. Neville & Rohrlich, Phys. Rev. D 3 1692 (1971)

Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000		000	○●○	000	00000	○
Calcula	tions in plane	classical				

<u>Classical motion</u>: identify momentum π_{μ} and position x^{μ} .

Intro QED & processes SFQED Field models Pairs Biref. Outro Calculations in plane waves: classical

<u>Classical motion</u>: identify momentum π_{μ} and position x^{μ} .

- Transversality of field \implies three conserved quantities.
- \implies Use phase $\phi := k.x = \omega(x^0 + x^3)$ to parameterise.

• Initial
$$p_{\mu} \to \pi_{\mu}(\phi)$$
 depending on
• $a_{1,2} = \int_{-\infty}^{\phi} d\varphi \frac{e}{\omega} E_{1,2}(\varphi)$

• LSZ \implies in/out wavefunctions. (Using potential $eA_{\mu}^{\text{ext}} = a_{\mu}$.)

$$e^{-} \text{ in: } \Psi_{p}^{-}(x) = \left[\mathbb{1} + \frac{1}{2k.p} \, k \not a(k.x)\right] u_{p} \, e^{-ip.x - \frac{i}{2k.p} \int_{-\infty}^{k.x} 2a.p - a^{2}}$$

• (Solutions of Dirac equation $i\mathcal{D} - m = 0$.)

What does all this mean?

Intro QED & processes SFQED Field models Pairs Biref. Outro Calculations in plane waves: quantum

• LSZ \implies in/out wavefunctions. (Using potential $eA_{\mu}^{\text{ext}} = a_{\mu}$.)

$$e^{-} \text{ in: } \Psi_{p}^{-}(x) = \left[\mathbb{1} + \frac{1}{2k \cdot p} \not k \not a(k \cdot x)\right] u_{p} \ e^{-ip \cdot x - \frac{i}{2k \cdot p} \int_{-\infty}^{k \cdot x} 2a \cdot p - a^{2}}$$

• (Solutions of Dirac equation $i\mathcal{D} - m = 0$.)

What does all this mean?

no background : $u_p \exp(-ip.x) = u_p \exp(-i\partial^{-1}.p)$ with background : $u_{\pi(\phi)} \exp[-i\mathcal{D}^{-1}.\pi(\phi)]$

- Exact solutions due to conserved quantities
- Simplicity due to vanishing of field invariants: no pairs!

• Incoming photon creates a pair.

$$\gamma(k') \underset{\text{laser}}{\longrightarrow} e^-(p) + e^+(p')$$

 $k'_{\mu} + (\mathsf{background}) = p_{\mu} + p'_{\mu}$

• S-matrix element:

$$S_{fi} = -ie \int d^4x \ \Psi_p^{\mathsf{out-}}(x) \ e^{-ik'.x} \notin \Psi_{p'}^{\mathsf{out+}}(x)$$

 For normalisations, flux factors etc see appendix in: Ilderton and Torgrimsson, Phys.Rev.D 87 (2013) 085040 [arXiv:1210.6840]

Periodic vs. short pulse backgrounds.

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 0●0	Biref. 00000	Outro 0
Old res	sults: very lon					

• Periodic waves. Infinite duration.

Niksihov, Ritus, Sov.Phys.JETP 19 (1964) 529

- Charges: rapid quiver motion.
- \rightarrow Quasi-momentum q_{μ}

 $q_{\mu} = p_{\mu} + \frac{\eta^2}{2k.p}k_{\mu}$

• Periodic waves. Infinite duration.

Niksihov, Ritus, Sov.Phys.JETP 19 (1964) 529

- Charges: rapid quiver motion.
- \rightarrow Quasi-momentum q_{μ}

 $q_{\mu} = p_{\mu} + \frac{\eta^2}{2k.p}k_{\mu}$

• S-matrix supported on:

$$k'_{\mu} + nk_{\mu} = q_{\mu} + q'_{\mu}$$
$$q^2 = m_*^2 \equiv m^2(1 + \eta^2).$$

Sengupta, 1952

? Pair production threshold: $n > \frac{2m_*^2}{k k'}$

• ELI optical laser: $m_* \sim 10^2 m!$

Extreme Light Infrastructure

- (arb. units)
- Energies: $0 \sim m$ and $1 \sim m_*$.

- Line spectrum.
- Shifted threshold.

•
$$k.k' > 2m^2(1 + \eta^2)$$

- Substructure.
- Sub-threshold behaviour
- Peaks = resonances.

- Lightfront momentum transfer:
- Peaks when average = multiple of driving frequency ω .
- Resonances! Just looks like energy to produce m_* pairs.
- Identifies $q_{\mu} = \langle \pi_{\mu} \rangle$

- Different structure.
- Clear signal between
 m and *m*_{*}.
- \implies Mass \leftrightarrow shifted mass dominance.
 - m_* not 'in control'.
 - The emission spectrum reflects the pulse shape.

- Different structure.
- Shifted peaks.
- Messy!

• $m_* \rightarrow M(k.x, k.y)$. Kibble, Salam, Strathdee, NPB 96 (1975) 255

Different pulse shape: there exist other effective masses m_{*}!

Harvey, Heinzl, Ilderton, Marklund Phys.Rev.Lett. 109 (2012) 100402

Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000		000	000	000	●0000	0
Optics: birefringence						

- A birefringent medium (length L).
- \bullet Refractive indices n_{\parallel} and $n_{\perp}.$
- A beam of light (wavelength λ').
- \implies Effective probe velocity depends on polarisation.
 - Linear \rightarrow elliptic, ellipticity δ :

$$\delta = \pi (\mathbf{n}_{\parallel} - \mathbf{n}_{\perp}) \frac{L}{\lambda'}$$

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 0●000	Outro 0
Vacuur	m birefringenc	е				

The quantum vacuum, exposed to intense light, is also birefringent.

Toll, PhD thesis, 1952

- Intense optical laser
- Send in X-ray probe: linear pol
- Probe emerges: elliptical pol
- Needs accurate X-ray polarimetry Marx et al PRL 110 (2013)

T. Heinzl et al, Opt. Commun. 267 (2006) 318

- Virtual loops \rightarrow refractive indices.
- First measurement of light-by-light?

Halpern, Phys.Rev. 44 (1934), HIBEF, ELI-NP

• Beyond the SM? What runs the loop?

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00●00	Outro 0		
Scatte	Scattering \rightarrow observables							

• Beam ellipticity: photons flipping helicity-state.

• Ellipticity:
$$\delta^2 = \mathbb{P}(\mathsf{flip}) = |S_{flip}|^2$$

• Much simpler then going 'via indices'.

Dinu, Ilderton, Heinzl, Marklund, Torgrimsson, PRD 90 (2014) & PRD 89 (2014)

- Look at impact of realistic pulse geometry.
- ! Precision expt.
- ! Need to do better than plane waves.
- Build up complexity.

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 000●0	Outro O
Impact	of pulse geor	netry				

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 000●0	Outro 0
Impact	of pulse geor	netry				

$$\delta = \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{2z_0}{\lambda'}$$

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 000●0	Outro O		
Impa	Impact of pulse geometry							

J

 $\delta = \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{2z_0}{\lambda'}$

ъ

 $\times \frac{\pi}{4}$

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 000●0	Outro O
Impac	st of nulse rec	metry				

• Hibef @ European X-FEL: En. = 30J, λ = 800nm, $w_0 = 2\mu$ m, τ = 30fs & $\lambda' = 0.1nm$

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 000●0	Outro O
Impac	st of nulse rec	metry				

• Hibef @ European X-FEL: En. = 30J, λ = 800nm, $w_0 = 2\mu$ m, τ = 30fs & $\lambda' = 0.1nm$

 $\delta = 2.2 \times 10^{-5}$

Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000		000	000	000	000●0	O
Impac	t of nulse geo	metry				

• Hibef @ European X-FEL: En. = 30J, λ = 800nm, $w_0 = 2\mu$ m, τ = 30fs & $\lambda' = 0.1nm$

 $\delta = 2.2 \times 10^{-5} \qquad \rightarrow 1.7 \times 10^{-5}$

Intro	QED & processes	SFQED	Field models	Pairs	Biref.	Outro
0000		000	000	000	000●0	O
Impac	t of nulse geo	metry				

- Hibef @ European X-FEL: En. = 30J, λ = 800nm, $w_0 = 2\mu$ m, τ = 30fs & $\lambda' = 0.1nm$
- $\delta = 2.2 \times 10^{-5} \longrightarrow 1.7 \times 10^{-5} \longrightarrow 2.0 \times 10^{-6}$
 - Only slightly beyond what can be measured today...

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 0000●	Outro 0	
Birefringence at ELI-NP							

- Pump/target: an intense (PW) optical laser
- Probe: synchrotron emission from laser-electron collisions.

$$\delta = \frac{2\alpha}{15} \frac{E^2}{E_S^2} \frac{2z_0}{\lambda'}$$

- $\ddot{-}$ Strong laser fields (E/E_S is 'large')
- $\ddot{-}$ Synchrotron radiation: gamma rays (λ' small)
- $\ddot{\frown}\,$ Messy environment, lose precision.
- $\stackrel{\sim}{\sim}$ Gamma ray spectroscopy is challenging!

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro •
Conclusions						

• If quantum and relativistic effects are important:

QFT is the theory to use.

Interested in theory?
 All-orders and nonperturbative physics
 Back-reaction, realistic fields...

 Interested in experiment? Unobserved standard model processes Beyond the standard model

Intro 0000	QED & processes	SFQED 000	Field models	Pairs 000	Biref. 00000	Outro 0
Links!						

Link to my homepage, (extended) presentation and exercises $\label{eq:https://goo.gl/e1F17f} $$ https://goo.gl/e1F17f $$$

https://sites.google.com/site/antonilderton/