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Overview

• A framework for strong laser field physics.

• Numerical issues

• Benchmarks

• Strong fields

• The Heisenberg-Euler effective Lagrangian.

• Wave equations
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• Numerical results
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Basic parameters

Some basic scales of the system are

n0 , A0 , ES =
m2c3

e~
, λ , λC =

~
mc

, t =
λ

c
, tC =

λC

c
. (1)

The non-linearity parameters of the field are

a0 =
eA0

mc
, F =

c2~B2 − ~E 2

2
, G = c ~E · ~B . (2)

The non-linearity parameters of the seeded processes of radiation and electron-positron pair production are

χ± =
e~

m3c4

√√√√( ε±~E
c

+ c~p± × ~B
)2

− (~p± · ~E)2 , (3)

χγ =
e~

m3c4

√√√√( εγ ~E
c

+ c~k × ~B
)2

− (~k · ~E)2 , (4)

where p− is the electron momentum, p+ the positron momentm, and k the photon momentum.
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Strong field effects in the a0 and γ landscape
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Classical radiating particle systems

The force equations for individual electrons consist of LAD and other electron contributions. They are given by

m
du
µ
i

dτi

=
e

c
F
µν
i (x

ρ
i ) uνi + m τ0 ∆µν (u

ρ
i )

dγνi

dτi

,

∆µν (uρ) = gµν −
uµuν

c2
, γνi =

duνi

dτi

, τ0 =
2e2

3mc3
.

The equations above have to be augumented with expressions for retarded em fields for point electrons. In mean
field approximation an extended Vlasov equation containing radiation is obtained (see Hakim et al. 1968)

∂τR1 (Xρ, τ) + uµ ∂x
µR1 (Xρ, τ)

+
4πe2

mc2
uν

∫
dτ
′

d4x
′

d4u
′ (

uµ
′
∂

xν − uν
′
∂

xµ
)

Dret

(
xρ − xρ

′)
R1
(

Xρ
′
, τ
′)
∂

u
µ R1 (Xρ, τ)

= −τ0 ∂
u
µ

[
∆µν (uρ)

∫
d4
γ̇ γ̇ν f 1 (Xρ, γ̇ρ, τ)] ,

where X = (x, u) and

R1 (Xρ, τ) =

∫
d4
γ̇ f 1 (Xρ, γ̇ρ, τ) .

The radiation field is stored in the electrons and the retarded Greens function Dret . The red force above is the
mean field force, which is solved numerically with the help of Maxwell’s equations. The blue force is the LAD force.
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Kinetic equations for e−, e+ and γ

• Each phase space volume element for electrons and positrons has gains and losses. The corresponding rate
equations are (see relativistic quantum kinetic equations, lecture course by H. Ruhl, LMU, Munich)

(
∂t + ~v · ∂~x + ~F · ∂~p

)
f±(~x, ~p, t) (5)

=

∫
d3k

dWγ

d3k
(~k, ~p + ~k) f±(~x, ~p + ~k, t)− f±(~x, ~p, t)

∫
d3k

dWγ

d3k
(~k, ~p)

+

∫
d3k

dW±

d3p
(~k, ~p) fγ (~x, ~k, t) + S(~x, ~p, t) .

• Radiation is modeled with the help of coherent fields and incoherent photons. Each phase space element
for photons has gains and losses. The corresponding balance is

(
∂t +

c2 ~k

ω
· ∂~x

)
fγ (~x, ~k, t) (6)

=

∫
d3p

dWγ

d3k
(~k, ~p)

[
f+(~x, ~p, t) + f−(~x, ~p, t)

]
−fγ (~x, ~k, t)

∫
d3p

dW±

d3p
(~k, ~p) .

The coherent fields are modeled with the help of nonlinear Maxwell equations.
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Spontaneous vacuum decay
For a purely electric field the dissipative part of the Heisenberg-Euler Lagrangian can be approximated by (see
related literature for the Wigner representation of the classical Dirac equation, lecture course H. Ruhl, LMU,
Munich, lecture course H. Ruhl, LMU, Munich)

S(~x, ~p, t) =
1

8π3

E(~x, t)

m2c2λ3
C

tC ES

e
−π c

m2c2+~p2
⊥

e~E(~x,t) δ(p‖) . (7)

The total spontaneous pair production rate is (Schwinger formula)

dN±

dt
=

∫
d3x

∫
dΩ

∫
dp‖

∫
dp⊥p⊥ S(~x, ~p, t) (8)

=
1

8π3

∫
d3x

∫
dΩ

∫
dp‖

∫
dp⊥p⊥

E(~x, t)

m2c2λ3
C

tC ES

e
−πc

m2c2+~p2
⊥

e~E δ(p‖)

=
1

4π3

V

λ3
C

E 2(~x, t)

E 2
S

1

tC

e
−π ES

E .

The Schwinger formula can be extended into the more general formula

dN±

dt
=

1

4π3

Vcell

λ3
C

a b

E 2
S

coth
b

a

1

tC

e
−π ES

a , (9)

a =

√√
F2 + G2 − F , b =

√√
F2 + G2 + F . (10)

F. V. Bunkin and I. I. Tugov, Sov. Phys. Dokl. 14, 678 (1970). See discussion of the Heisenberg-Euler model.
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Photon emission in constant-crossed fields

The probability rate for photon emission by an electron in a constant-crossed electromagnetic field is given by (see
Ritus, Baier, and the textbook of Landau & Lifshitz for derivation, lecture course H. Ruhl, LMU, Munich)

dWγ (εγ )

dεγ
= −

αm2c4

~ε2
±


∞∫
x

Ai (ξ) dξ +

(
2

x
+ χγ

√
x

)
Ai
′(x)

 , (11)

∫
dΩ k2 dWγ

d3k
= ~c

dWγ

dεγ
, ~p±(t + δt) = ~p±(t)− ~k(t) , ~p± ‖ ~k .

The parameter x is given by x =
(
χγ/χ±(χ± − χγ )

)(2/3)

with 0 ≤ χγ < χ±, Ai is the Airy function, εγ , and ε± are
the energies of the photon, positron and electron, respectively.
The quantum efficiency parameters χ± and χγ are given on a
previous slide.
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Pair creation in constant-crossed fields

The probability rate for pair creation by photons in a constant-crossed electromagnetic field is given by (see
Fedotov, Ritus, Baier, and the textbook of Landau & Lifshitz for derivation)

dW±(ε±)

dε±
=
αm2c4

~ε2
γ


∞∫
y

Ai (ξ) dξ +

(
2

y
− χγ

√
y

)
Ai
′(y)

 , (12)

∫
dΩ p2
±

dW±

d3p±
= ~c

dW±

dε±
, ~p+(t + δt) + ~p−(t + δt) = ~k(t) , ~p± ‖ ~k .

The parameter y is given by y =
(
χγ/χ±(χγ − χ±)

)(2/3)

with 0 ≤ χ± < χγ . The quantum efficiency parameters χ±
and χγ are given on a previous slide.
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The numerical multi-scale problem

see
d γ

e−
e+e−

e−

e+
e+

e−

e+

QED
effects

∆t
= (aω

0)
−1

Plasma

∆t
=

(ω 0
√ N)−

1

Laser

∆t
= ω
−1
0
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Adaptive particle load → APR-PIC

• Adaptive weights

f =
∑

i

wiδ(~u − ~ui )S(~r − ~ri )

• Mass conservation
W =

∑
wi → w1,2 = W/2

• Momentum conservation

~P =
∑

i

~uwi → ~p1,2 = ~P/2± ~Q, ~Q = |Q|
(
−Py
Px

)

• Energy conservation

ε =
∑

i

wi

√
1 + ~ui , |~Q| = 0.5

√
ε2 − P2 −W 2

In addition, no divergence and currents must be generated during re-sampling.

N. Moschüring and H. Ruhl, Divergence free APR, in preparation.
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Configuration space adaptivity → The AMR method

10 20 30 40 50
x, c/ω0

2
4
6

y,
c/
ω

0

 |By | Lens, n=2

The plot shows a non-uniform grid with four resolution levels. There is a radiation source in the middle. The
radiation passes through a lense. There is no reflection at the grid resolution boundaries. Grid adaptivity is
presently not used in the PSC but will be employed for a future restart facility of the code.

N. Elkina and H. Ruhl, An adaptive mesh refinement method for computational electromagnetics, in preparation.
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Weak and strong scaling behavior of the code

The plot shows the strong and weak scaling behavior of the PSC. The particle push operation and full integration
steps are distinguished. For tests of weak scaling the problem size increases 8-fold for 8-fold the number of nodes.
For strong scaling tests the problem size is fixed. Now, doubling the node number cuts the simulation time by half.

K. U. Bamberg and H. Ruhl, Extreme Scaling of the PSC on SuperMUC at the LRZ, inSiDE 12, 51 (2014).
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The analytical solution of a 1D nano foil hit by a laser

A slowly varying envelope approximation has been applied!

dpxe

dt
= −

α

2
sign(xe ) +

a2
0

γe

(
√

RT +
α

2

1

γe (1 + βe )
T

)
, (13)

dxe

dt
=

pxe

γe
, (14)

R = 1− T , T =
a2

a2
0

, γe = γxe

√
1 + a2 , βe =

pxe

γe
, (15)

a =

√√√√√
√(

1 + 1
4
α2γ2

xe (1 + βxe )2 − a2
0

)2
+ 4a2

0 −
(

1 + 1
4
α2γ2

xe (1 + βxe )2 − a2
0

)
2

, (16)

ψ = arccos
a

a0

, (17)

a0 = C exp

[
−

1

2

(
(t − toff )− xe

w

)2
]
, (18)

C = 13,15,22 α = 8π , xe (0) = 0 , pe (0) = 0 , toff = 4 w/c , w = 1.5λ . (19)



Overview Numerical issues Benchmarks Strong fields Summary References

Analytical results at a = 13
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Numerical vs analytical at a = 16

Agreement is within expectation!

Green is analytic and grey is numerical data.



Overview Numerical issues Benchmarks Strong fields Summary References

Quantum radiation from an e− in a constant magnetic field
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By courtesy of C. Klier. The plot shows the average energy γ versus time. Simulated data (left) and analytical
data (right).
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Constant rotating field: Growth of Ne+e−

N(t) ∼ eΓt

The number of pairs N
e+e− as a function of time

(results of three MC simulations for a0 = 2× 104,
ω = 1 eV, Γ = 4.91± 0.75).

Γ ∼ 1/tem ∼ αµ1/4
√

mc2ω/~

Parametric study of the growth rate Γ(µ) for pairs in

the range between a = (10− 100)× 104, for
ω = 1 eV , and ω = 0.66 eV .

Elkina N., Fedotov A. M., Kostyukov I. Yu., Legov M. V., Narozhny N. B., Nerush E. N. , and Ruhl H., QED
cascades induced by circularly polarized laser fields, Phys. Rev. ST. Accel. 14, 054401 (2011).
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Radiation friction

d~pi

dt
= −e

(
~E + ~vi × ~B

)
−

~p

|~p|

∫
d3k ~k

dWrad

d3k

(
~pi , ~k

)
, (20)

~E(~x, t) = E0 e
− l2

2d2 (x2+y2)
(

e
− 2π

∆φ2 (t−z)2

cos [2π(t − z)] (21)

+e
− 2π

∆φ2 (t+z)2

cos [2π(t + z)]

)
~ex

+E0 e
− l2

2d2 (x2+y2)
(

e
− 2π

∆φ2 (t−z)2

sin [2π(t − z)]

+e
− 2π

∆φ2 (t+z)2

sin [2π(t + z)]

)
~ey ,

∂t
~B(~x, t) = −~∇× ~E(~x, t) . (22)
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Radiation friction: PSC simulation

-6 -4 -2 2
x(t)

-2

-1

1

2

3

y(t)

Plot (a) shows the guiding center motion of a single radiating electron in the rotating electromagnetic field for
a0 = 800. The electron is trapped in the high field region for a long time as can be concluded from plot (b), which
gives the radius r of the electrons measured from the center for the external field as a function of time. Without
radiation friction the electron would drift away quickly.

A. M. Fedotov, N. V. Elkina, E. G. Gelfert, N. B. Narozhny, H. Ruhl, PRE (2015).
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Radiation friction: PSC simulation

The plot shows the probability density of trapped electrons in a rotating em-field with a0 = 800 as a function of
time t and radius r measured from the center of the em-field. As can be seen from the inset the whole ensemble
performs an ocillatory guiding center motion and is trapped in the high field region until electrons reach the critical
radius r∗ = 17µm at a∗ < a0.
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Radiation friction: PSC simulation

The plot shows the probability density of trapped electrons emitting quantum radiation in the rotating em-field
with a0 = 800 as a function of time and radius r measured from the center of the external em-field. Is is seen that
electrons emitting quantum radiation exit the high field region faster. The yellow line to the left of the plot shows
the path of the electron ensemble without radiation friction.
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Radiation friction: PSC simulation

The plot shows the trapping times for the electron probability density for no radiation friction (blue line), classical
radiation friction (green line), and quantum radiation friction (red line).
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Cascading in an external field: PSC simulation

The plot shows the initial electron density of a nano foil and field on the its surface. The initial electron density is

ne = 1.75 · 1011Asm−3, while the initial electron number density is 1030 m−3. The diameter of the foil is
90/2π µm. The laser pulse is Gaussian with a FWHM diameter of 50/2π µm. The laser pulse hits the foil at the
center of the disk.
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Cascading in an external field: PSC simulation

The plot shows the evolution of the electron density during cascading. Two circular counter-propagating laser
pulses at a0 = 300 are impinging a low density nano plasma disk. The driving fieldc is considered being an external

field. The density grows exponentially. After 400 time steps the electron density is ne = 3.08 · 1011 Asm−3. The
field strengths of the two laser pulses increase linearly over about 400 time steps up to the peak field.
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Cascading in an external field: PSC simulation

The plot shows the evolution of the electron density of the nano foil. Both laser pulses take about 250 time steps

to get to full power. After n = 1100 time steps the electron density is ne = 2.0 · 1016Asm−3. At n = 1100 the
density is 105 over-critical.



Overview Numerical issues Benchmarks Strong fields Summary References

Cascading in an external field: The diagnostic

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4

b
~r

~p

~p

φ

The plot shows the radial position vector ~r of an electron and the momenta ~p of the secondary electron or photon.
In the plots shown later the angle φ is derived from |r| |p| cosφ = ~r · ~p

〈φ〉 =

Ne,γ (t)∑
i=1

~ri · ~pi

|~ri ||~pi |
, (23)

where the average is over all secondary particles Ne,γ (t).
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Cascading in an external field: PSC simulation

Since the secondary particles will always be emitted parallel to the momentum of the emitting seed particles The
angle measure is sensitive to the angular distribution of secondary momenta as a function of position. If secondary
particles would exit radially 〈φ〉 would be peaked around 〈φ〉 ≈ 0. The average quantum efficiency parameters are
given by

〈χe,γ〉 =
1

Ne,γ (t)

Ne,γ (t)∑
i=1

χ
i
e,γ (24)
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Cascading in an external field: PSC simulation

The upper plot to the left shows the radial position of the cascading electrons as a function of time. The second
plot on the top shows 〈χe〉 as a function of radial position. The third plot on the top shows the direction of the
cascading electrons as a function of energy. The first plot on the bottom shows 〈χγ〉 as a function of radial
position. The second plot on the bottom shows the direction of the photons as a function of k.
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Cascading in an external field: PSC simulation

The upper plot to the left shows the radial position of the cascading electrons as a function of time. It shows
radiative trapping. The second plot on the top shows 〈χe〉 as a function of radial position. The third plot on the
top shows the direction of the cascading electrons as a function of energy. The first plot on the bottom shows the
〈χγ〉 as a function of radial position. The second plot on the bottom shows the angular distribution of the
photons as a function of k.
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Cascading in an external field: PSC simulation

The upper plot to the left shows the radial position of the cascading electrons as a function of time. It shows
radiative trapping. The second plot on the top shows 〈χe〉 as a function of radial position. The third plot on the
top shows the direction of the cascading electrons as a function of energy. The first plot on the bottom shows the
〈χγ〉 as a function of radial position. The second plot on the bottom shows the angular distribution of the
photons as a function of k.
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Cascading in a full field: PSC simulation

The plot shows the evolution of the electron density during cascading. The simulation starts from two circular
counter-propagating laser pulses at a0 = 300 impinging a low density nano plasma disk. The driving field is
considered being an external field. The density grows exponentially. The field strengths of the two laser pulses
increase linearly up to the peak field.
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Cascading in a full field: PSC simulation

The upper plot to the left shows the radial position of the cascading electrons as a function of time. It shows
radiative trapping. The second plot on the top shows 〈χe〉 as a function of radial position. The third plot on the
top shows the direction of the cascading electrons as a function of energy. The first plot on the bottom shows the
〈χγ〉 as a function of radial position. The second plot on the bottom shows the angular distribution of the
photons as a function of k.



Overview Numerical issues Benchmarks Strong fields Summary References

The Heisenberg-Euler Lagrangian

We define (~ = c = 1)

F =
F 2

4E 2
s

, G = −
F F∗

4 E 2
s

, a =

√√
F2 + G2 + F , b =

√√
F2 + G2 − F . (25)

We assume

λC

∣∣∂ηFµν
∣∣� ∣∣Fµν ∣∣ , λC =

1

m
. (26)

Fields can be considered constant and the effective Heisenberg - Euler Lagrangian in one loop approximation is

LHE = −
m4

8π2

∫ ∞
0

ds

s3
exp(−s)

[
s2 (ab) cot(sa) coth(sb)− 1 +

s2

3
(a2 − b2)

]
. (27)

LHE disappears for vanishing fields and can have real and imaginary parts. For purely electric fields LHE has an
imaginary part

LHE = −
m4E 2

8π2

∫
ds

s2
exp

(
−

s

E

) (
coth s −

1

s
+

s

3

)
→ ImLHE ∼

m4E 2

8π3

∞∑
n=1

1

n2
exp

(
−π

n

E

)
. (28)

W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
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Weak field expansion of Heisenberg-Euler

In what follows we consider the weak field expansion of LHE , for which E � 1 holds. This rules out pair
production. We find

Lweak
HE = −

m4

α

∞∑
n=1

Ln , (29)

L1 =
1

4π

α

90π

[(
~E 2 − ~B2

)2
+ 7

(
~E · ~B

)2
]
,

L2 =
1

4π

α

315π

(
~E 2 − ~B2

) [
2
(
~E 2 − ~B2

)2
+ 13

(
~E · ~B

)2
]
,

L3 =
1

4π

4α

945π

[
3
(
~E 2 − ~B2

)4
+ 22

(
~E 2 − ~B2

)2 (~E · ~B)2
+ 19

(
~E · ~B

)4
]

and in addtion we have the Lagrange density for the Maxwell fields

LMW =
m4

8π

(
~E 2 − ~B2

)
, L = LMW + Lweak

HE . (30)

The terms Ln describe effective 2n photon scattering. We restrict ourselves to L1 and L2.

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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Nonlinear wave equations for ~E and ~B

With the help of the Lagrange formalism nonlinear field equations for ~E and ~B are obtained

�~E = 4π
[

+~∇× ∂t
~M + ∂

2
t
~P − ~∇(~∇ · ~P)

]
, (31)

�~B = 4π
[
−~∇× ∂t

~P + ~∇2 ~M − ~∇(~∇ · ~M)
]
, (32)

~P =
α

m4

∂LHE

∂~E
, ~M =

α

m4

∂LHE

∂~B
. (33)

We assume that we have a probe field and a strong field

Fµν = Fµνp + Fµνs . (34)

We analyze the equations for the electric field

�~E = ~T
[
~E , ~B

]
, ~T

[
~E , ~B

]
= 4π

[
+~∇× ∂t

~M + ∂
2
t
~P − ~∇(~∇ · ~P)

]
. (35)

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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Solution of nonlinear wave equation for ~E in 1D
In what follows probe and strong fields are taken to be of the form

~E 0
p (φp ) = ~εp Ep e

−
(
φp
Ψp

)2

cosφp , ~E 0
s (φs ) = ~εp Es e

−
(
φs
Ψs

)2

cosφs , (36)

Ψj = ωjτj , φj = k
µ
j xµ , j = s, p , (37)

~kp = (0, 0, 1) , ~ks = (0, 0,−1) , ~εp · ~εp = ~εs · ~εs = 0 , ωpτs � 1 . (38)

Probe and strong fields are counterpropagating plane waves. Initially the total electric field is given by
~E 0(t, z) = ~E 0

p (x−) + ~E 0
s (x+), where x± = t ± z holds. The 1D wave equations is

�~E = ~T
[
~E 0
, ~B0

]
, �~E 0 = �~B0 = 0 . (39)

The solution is given by

~E(t, z) = ~E 0(t, z) + ∆E(t, z) , (40)

∆E(t, z) =

∫
dt
′ ∫

dz
′

GR (t − t
′
, z − z

′
) ~T

[
~E 0(t
′
, z
′

), ~B0(t
′
, z
′

)

]
, (41)

GR (t, z) =
1

2
θ(t)θ(t − |z|) . (42)

The solution is a sum of scattered forward- and backward-propagating fields as is seen by a partial integration in t
′

.

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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Iterative solution of wave equation for ~E in 1D
The solution of

(
∂

2
t − ∂

2
z

)
~E n+1 = ~T

[
~E n
, ~Bn

]
(43)

is a fixed point after n iteration steps. A graphical representation is:

E
(n+1)
p = E

(0)
p + ∆E

(n)
p

= +

~E n+1(t, z) = ~E 0(t, z) + ∆E n(t, z) , (44)

∆E n(t, z) =

∫
dt
′ ∫

dz
′

GR (t − t
′
, z − z

′
) ~T

[
~E n(t
′
, z
′

), ~Bn(t
′
, z
′

)

]
, (45)

GR (t, z) =
1

2
θ(t)θ(t − |z|) . (46)

P. Böhl, H. Ruhl, and B. King, Phys Rev A 92, 032115 (2015).
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Iterative solution of wave equation for ~E in 1D

It is found that the 1th order solution form 4 photon scattering (L1 contribution) scales as

∆E 1 ∼ µ1 E 3
s E 2

p Φ , Φ = ωpτs . (47)

For Φ� 1 the perturbation ∆E 1 can become large while the field amplitudes are small. Higher harmonic
generation from 4 photon scattering only occurs from the second iteration. It scales as

∆E 2
4 ∼ µ

2
1 E 3

s E 2
p Φ , (48)

while higher harmonic generation from 6 photon scattering occurs from the first iteration. It scales as

∆E 1
6 ∼ µ2 E 3

s E 2
p Φ . (49)

Since µ1 � µ2 is holds that ∆E 2
4 � ∆E 1

6 .

P. Böhl, H. Ruhl, and B. King, Phys Rev A 92, 032115 (2015).
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The numerical scheme

For the 1D geometry given the wave equations can be cast into the form

(14 + A) ∂t
~f = (Q + B) ∂z

~f , (50)

~f =


Ex
Ey
Bx
By

 , (51)

Q =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , (52)

A =
m4

360π2


10B2

x − 4B2
y + 12E 2

x + 4E 2
y 14Bx By + 8Ex Ey ... ...

14Bx By + 8Ex Ey −4B2
x + 10B2

y + 4E 2
x + 12E 2

y ... ...

0 0 0 0
0 0 0 0

 , (53)

B =
m4

360π2


8By Ex − 14Bx Ey −14Bx Ex − 20By Ey ... ...
20Bx Ex + 14By Ey 14By Ex − 8Bx Ey ... ...

0 0 0 0
0 0 0 0

 (54)

Solved by the PCMOL method.

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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The numerical scheme

We first consider the case A = B = 0

14∂t
~f = Q∂z

~f . (55)

It is possible to find a transformation P

P =
1
√

2


−1 0 0 1
0 1 1 0
1 0 0 1
0 −1 1 0

 (56)

such that

L = PQP−1 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , ~u = P~f =
1
√

2


By − Ex
Ey + Bx
Ex + By
Bx − Ey

 (57)

such that

∂t~u + L∂z~u = 0 . (58)

This equation is integrated with an upwind scheme.

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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The numerical scheme

We next consider the case A 6= B 6= 0. We try to bring the equations into the ODE form

∂t~u = ~H (~u, t) , ~H (~u, t) = −P (14 + A)−1 (Q + B) P−1
∂z~u . (59)

We rewrite A = MN with

M =


1 0
0 1
0 0
0 0

 , N =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
(60)

such that

(14 + A)−1 = 14 −M (12 + NM)−1 N . (61)

The inversion of a 4× 4-matrix is reduced to the inversion of a 2× 2-matrix. The ODE is solved with high
precision. The method can be extended to more than 1D with some effort. The simulated system has a length of
320µm and makes use of 2 · 105 stencils in space.

B. King, P. Böhl, and H. Ruhl, Phys Rev D, (2014).
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The scattered and overlap fields

• The solution consists of an overlap field and a scattered field.

• Scattered and overlap fields can be written as sums over harmonics
of the probe field to a good approximation. Details of the analytical
calculation will not be presented.

• Scattered and overlap fields depend on the parameters Ep, Es , ~kp,
~ks , ~εp, ~εs , and ωpτs .



Overview Numerical issues Benchmarks Strong fields Summary References

Numerical simulation in 1D of scattered and overlap fields

Two plane waves ~Ep and ~Es interacting, where ~εp · ~εs = 0 and ωpτs � 1. Propagation is along the z-direction,

t4 > t3 > t2 > t1, simulation box length 320µm, resolution 2 · 105 grid points, all fields in probe field units Ep .

Small panels show total electric fields of ~Ep + ~Es , larger panels show scattered overlap (red) and asymptotic (blue)
2nd harmonic radiation.
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Comparison between theory and numerical simulation in 1D

2nd harmonic overlap field (red dashed line) is generated from 4-photon scattering. The asymptotic field (green
dashed-dotted line) is generated from 6-photon scattering. There is excellent agreement between simulation (green
dots) and theory (solid line). The parameters are Es = 0.02, Ep = 0.005, τs = 6.4λp , τp = 5λp , and ωp = 0.6
eV. All fields in units of the Schwinger field.
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2D numerical simulation prior to the collision of the pulses

Same parameters as in the 1D case. Top plot: E p
x . 2nd plot: E s

y . 3rd plot: Odd harmonics polarized along x . 4th

plot: Even harmonics polarized along y .
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2D numerical simulation after the collision

Same parameters as in the 1D case. Top plot: E p
x . 2nd plot: E s

y . 3rd plot: Odd harmonics polarized along x . 4th

plot: Even harmonics polarized along y . Harmonic emission mostly along the z-direction.
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2D numerical simulation after the collision

Same parameters as in 1D. Lineout along ωx = 0, red FFT of Ey , blue FFT of Ex . Polarization of odd harmonics
is along the x direction and of even harmonics along the y -direction.
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Iterative solution of nonlinear wave equation for ~E

10−2 10−1

Es

10−22

10−20

10−18

10−16

10−14

10−12

I
(2

ω
p
)/

I
(0
)

p
(ω

p
)

‖ set-up (num.)
‖ set-up (theor.)
⊥ set-up (num.)
⊥ set-up (theor.)

The relative intensity of the second harmonic generated by single six-photon scattering for Ep = 10−3. Ep/s in

units of the Schwinger field.

P. Böhl, H. Ruhl, and B. King, Phys Rev A 92, 032115 (2015).
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Iterative solution of nonlinear wave equation for ~E

1 2 3 4 5
ω/ωp

10−30

10−25

10−20

10−15

10−10

10−5

1

I
(ω

)/
I

(0
)

p
(ω

p
)

εεε‖, ‖ set-up

εεε‖, ⊥ set-up
εεε⊥, ⊥ set-up

High harmonic generation from multiple four-photon scattering for ν1 = 16 E3
s Ep Φ = 3.3 · 104.

P. Böhl, H. Ruhl, and B. King, Phys Rev A 92, 032115 (2015).
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Iterative solution of nonlinear wave equation for ~E

1 10 20
ω/ωp

10−28

10−24

10−20

10−16

10−12

10−8

10−4

1

I
(ω

)/
I

(0
)

p
(ω

p
)

(a)

1 10 20
ω/ωp

(b)

1 10 20 30
ω/ωp

(c)

Harmonic spectra in the parallel set-up for different regimes of solution (ν2 = 192µ2 E3
s Es = 0.05, 0.6, 1). The

dots show the leading order perturbative term, the dashed line is the all-order analytical solution and the solid line
is from numerical simulation.

P. Böhl, H. Ruhl, and B. King, Phys Rev A 92, 032115 (2015).
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Summary

• A strong field simulation framework has been discussed.

• The process of radiation friction have been discussed.

• The process of radiation friction and cascading has been discussed.

• General nonlinear wave effects in the vacuum have been discussed.

LMU
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