A Short (55 min) Course in Laser Plasmas Induced By ELI-SCALE Lasers

Richard Freeman

The Ohio State University

Columbus Ohio

Physics connections within and beyond HEDP

Dama D

Laser plasma interactions can provide table-top sources including electron, x-ray, γ-ray, ion, and positron beams

Picture: courtesy of Kwei-Yu Chu and Lawrence Livermore National Laboratory

Understanding laser-generated electron beam characteristics (source size, energy distribution, divergence) is the key to advancing these radiation or particle sources

Target of any material, any thickness

Any angle, any polarization

- Vacuum (or Brunel: not-so-resonant, resonant) Heating
 - Ignore B-field
 - E-field accelerates electrons near surface
 - Requires some p-component of light (E poking surface)

Electrons slammed into surface w/ v~v_{os}sinθ

J x B Heating

- · Very high intensities the v x B force becomes important
- Accelerates electrons along k-vector
- Accelerates electrons at twice laser frequency

Laser Interactions in the real world

- In a perfect world
 - Laser interacts with solid density
 - High current burst of electrons transports energy
- In the real world
 - Energy before main pulse
 - · Main short pulse interacts with low density plasma NOT solid
 - Big lasers don't focus perfectly
 - Generation of electrons & subsequent transport messy
 - Most diagnostics are time-integrated

Typical experimental target is a thin metal foil (AI, Cu, Au, etc.)

Expanding "pre-plasma" is formed at the laser focus by "pre-pulse"

Expanding "pre-plasma" is formed at the laser focus by "pre-pulse"

Expanding "pre-plasma" is formed at the laser focus by "pre-pulse"

Main laser pulse interacts with "preplasma" rather than sharp interface

Laser-plasma interaction creates relativistic electron jet

Transport Issues

- Hotter than surrounding background electrons
- · How do they propagate in high densities?

BIG disconnect between ion temperature—conduction electron temperature—laser-excited electron

A curl of thermal and density gradients produce large B fields

In general: whenever there is a misalignment of "electron drivers" there will be induced magnetic fields. These magnetic fields can be enormous—many hundreds of MEGA Guass

First thing about laser-plasmas you need to understand and memorize

- Complex index of refraction \rightarrow absorption or no propagation
- When driving frequency = plasma frequency
 - Index becomes complex
 - k-vector imaginary component \rightarrow no propagation inside
 - Light is reflected
- Critical Density $n_c = density$ where $\omega = \omega_p$
- For light w/ wavelength = 1 micron \rightarrow n_c = 10²¹ cm⁻³

$$n_{c} = \frac{m\varepsilon_{o}\omega_{L}^{2}}{e^{2}} = \frac{m\omega_{L}^{2}}{4\pi e^{2}} \approx 1.1x10^{21}\lambda^{-2}(\mu m)cm^{-3}$$

• Higher frequency (shorter λ) \rightarrow penetrates to higher density

Second thing about laser plasmas you need to understand and memorize

- Consider a uniform plasma & 1-D
- Number density n_e
- Surface charge density $\sigma = en\delta x$
- Electric field $E=\sigma/\epsilon_o$
- · Newton's law for a test particle, e

$$m\frac{d^2\delta x}{dt^2} = -eE = -\frac{e^2n_e\delta x}{\varepsilon_o}$$

$$\delta x = \delta x_o \cos \omega_p t$$
$$\omega_p = \sqrt{\frac{n_e e^2}{m\varepsilon_o}} = \sqrt{\frac{4\pi n_e e^2}{m}} = 5.64x 10^4 \sqrt{n_e (cm^{-3})} s^{-1}$$

The Action is at Critical Density

- Whatever the density profile, light will propagate up to n_c
- Light couples to electrons most strongly at n_c
- If intensity is high enough (relativistic) $\rightarrow \gamma n_c$
- For solid density \rightarrow above critical density
 - Different laser interactions
- Question is always → what is the density profile?

Ponderomotive Force

Force on charged particles \rightarrow Gradient of intensity

When an electron interacts with an intense laser, the Lorentz force due to the laser B field plays an important role

- In a plane wave, cB = E
- When $v_x \ll c$, $-ev_x B \ll -eE$, Lorentz force is often neglected
- This is a significant effect when $I\lambda^2 > 10^{18} \mu m^2 W/cm^2$

When an electron interacts with an intense laser, the Lorentz force due to the laser B field plays an important role

- In a plane wave, cB = E
- When $v_x \ll c$, $-ev_x B \ll -eE$, Lorentz force is often neglected
- This is a significant effect when $I\lambda^2 > 10^{18} \mu m^2 W/cm^2$

When an electron interacts with an intense laser, the Lorentz force due to the laser B field plays an important role

- In a plane wave, cB = E
- When $v_x \ll c$, $-ev_x B \ll -eE$, Lorentz force is often neglected
- This is a significant effect when $I\lambda^2 > 10^{18} \ \mu m^2 \ W/cm^2$

Relativistic intensities

Intensity rises \rightarrow electron moves faster \rightarrow relativistic $KE = E_T - E_0 = (\gamma - 1)E_o \qquad \gamma = \left[1 + \frac{I\lambda^2}{1.37x10^{18}Wcm^{-2}}\right]^{\frac{1}{2}}$ y $\vec{F}_B = -\frac{e\vec{v}}{KB}$

•At 10²¹ Wcm⁻² quiver energy is 13 MeV scaling as I^{1/2} •Electric field is 100 kV/nm or 180 a.u.

•field ionizes bound electrons with up to 4 keV binding energy

Transport Issues

- All the preceding processes generate "hot" electrons
- Hotter than surrounding background electrons
- How do they propagate in high densities?

Charge Separation Issues

- Start with neutral solid target
- Laser ionizes & creates hot electrons
- High speed electrons want to stream into solid BUT
- · Hot electrons move away from positive ions
 - Massive electric fields build up & stop electrons
 - We know they stream into material
 - HOW?
- Recall solid density contains lots of low energy electrons
 - So called cold or background or plasma electrons
 - These supply charge & current neutralization

- Laser generated hot electrons ~ MeV energies
- Background cold electrons ~ temperature of material
 - Hot electrons couple to material weakly
 - Lower energy hot electrons couple to material
 - Temperature rises for cold electrons & resistivity changes
- Typical experiments \rightarrow mega-amperes of hot electrons $\vec{j}_h = -en_h \vec{v} \approx -en_h \vec{c}$
- Low density but very high speed
- Can a net current flow?

1 ps laser pulse focused to spot ~30 µm, absorbed intensity of 10¹⁸ W/cm² → energy per pulse ~7J, (10¹⁴ fast e⁻ @200keV); bunch ~60 µm in length (RMS 200 keV fast e⁻ range in Al); magnetic field on surface of cylinder ~3200 MG →<u>magnetic field energy of 5 kJ!</u> --A.Bell, et al., Plasma Phys Control Fusion 39 653 (1997)

HIC IAIE

Return Current

- · Must have return current to conserve energy
- Must have return current to cancel charge separation
- Net current in the material is ~0

$$\vec{j}_{net} \approx 0 = \vec{j}_{hot} + \vec{j}_{return}$$
 $\vec{j}_{hot} = -n_{hot}e\vec{v}_{hot}$ $\vec{j}_{return} = -n_{return}e\vec{v}_{return}$

$$n_{hot}\vec{v}_{hot} = n_{return}\vec{v}_{return}$$
$$\vec{v}_{hot} \gg \vec{v}_{return} \Longrightarrow n_{hot} \ll n_{return}$$

- Fundamental constraints for these arguments
 - Hot electron density must be small

So NET current in the material (sum of hot + cold) is nearly **zero**

But wait, there's more

- Return current → cold, slow moving electrons
 - Coulomb cross section big
 - Resistivity big → much bigger than for hot electrons
 - Cold electrons "see" high resistivitiy
 - Set up electric field E=ηj
 - This field slows down the hot electrons
 - Known as Ohmic inhibition

AND

$$\frac{\partial \vec{B}}{\partial x} = -\vec{\nabla} \times \vec{E}$$

Transport Issues

• All the preceding processes generate "hot" electrons

£Ωh

- Hotter than surrounding background electrons
- How do they propagate in high densities?

Large internal magnetic fields arising from CURL of the Ohmic electric field due to return current

The typical electron energy spectrum is quite broad

"Loop-injected direct acceleration" is a simple 3 step injection mechanism

Sample tracks show LIDA mechanism

Green shows early heating stage shows looping stage Red shows DLA and dephasing stage

Electron can be accelerated to high energies by direct laser acceleration using a high intensity laser

LIDA dominates "hot tail"

