Laser Gamma Experiments Department

Laser Gamma Experiments Department (LGED) at ELI-NP proposes experimental setups in the E7 and E4 experimental areas to tackle problems of fundamental physics, taking advantage of the unique configuration and characteristics of the new research infrastructure constructed in Magurele, Romania. E4 features two 100 TW laser beams at a repetition rate of 10 Hz (further upgrade to 1 PW / 1 Hz foreseen), while in E7 we have two 10 PW laser beams at a repetition rate of 1 pulse / minute and a high energy tunable gamma radiation beam.

The experimental setups proposed follow a gradual approach from the point of view of complexity, from the "Day 1" experiments (employing in the first stage only one 1 PW laser beam) to experiments for which the prerequisites include results from the previously performed ones. The following research topics have been proposed in the LGED TDR:

PPEx – The production and photoexcitation of isomers, relevant for stellar conditions;
RR – study of Radiation Reaction to validate nonlinear/non-perturbative QED treatments;
Pair – Pair creation in QED regime;
Pol – Polarization properties of emission in strong fields;
VBir – study of the vacuum birefringence via the depolarization of linearly polarized gamma-rays;
DM – search for weakly coupling sub-eV Dark Matter;
GG – Gamma-gamma collider to verify the QED-based elastic gamma-gamma scattering;
Bio - Biophysics and biomedical applications

We have a series of research and development activities synergetic with our main research topics, for the accomplishment of the prerequisites for successful experiments (e.g., stability and repeatability, signal to noise ratio, detections) and further improvements (such as the gradual improvement of the vacuum level, beneficial for the high-sensitivity experiments):

Development of a detection system, Gamma-Polari-Calorimeter (GPC), commonly applicable to energy measurements for electrons, positrons and gamma-rays above the 0.1 GeV energy scale;
Preparatory tests for laser plasma acceleration of electrons up to necessary energies 210 MeV, 2.5 GeV and 5 GeV for the later stage experiments, respectively;
Tests of the behaviour of optical elements under mechanical and thermal stress generated by the bake-out procedures for ultra-high vacuum;
Outgassing tests (mass spectrum measurements) for components of the optical setups to be placed in ultra-high vacuum;
New methods for metabolomics;
Development of NMR methods (pulse sequences) to preserve the lifetime of stable-isotope spin polarisation (long-lived states and coherences) for imaging and biomolecular studies (Patent application submitted in 2019).

In order to best use the existing skills and ease the development of new competencies needed in the implementation and towards the operational phase of the facility, the activity in our department takes place in five workgroups:

WG1 Physics – Theoretical foundation of the LGED experimental aims;
WG2 Laser Physics / Optics – Theory, application and engineering of complex optical systems;
WG3 Simulations – Numerical simulations for optical laser systems and laser-matter interaction;
WG4 Mechanics and vacuum R&D - Development of state-of-the-art, mechanical and ultra-high vacuum systems;
WG5 Detectors, DAQ & Control Systems – development of detector setups, data acquisition systems, control systems for the experiments;
WG6 Biophysics - Radiobiology studies using high dose-rate radiation sources.

Want to join or team? ELI-NP RA5 has open positions! Please check the Jobs section for available positions and information on how to apply.

International collaborations have been one of the main ingredients in the successful development of the ELI-NP scientific case, scientists from four continents proposing novel ideas that can be tested with the unique research capabilities of ELI-NP. At LGED, we are constantly eager to expand our collaborations, and we are currently collaborating for the implementation of the commissioning experiments with:

Hiroshima University, Japan – Prof. K. Homma, Leader of the LGED TDR;
Institute for Chemical Research, University of Kyoto, Japan – the group led by Prof. S. Sakabe, collaboration on RD5-DM experiment topics;
KEK, Energy Accelerator Research Organization, Institute of Particle and Nuclear Studies, Japan – collaboration regarding pixelated SoI detectors with the group led by Dr. Y. Arai;
Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST) – collaboration with the group led by Prof. M. Kando on topics of laser acceleration of electrons;
Konan University – Prof. H. Utsunomiya, collaboration on LGED-PPEx topics.

E4 ready for experiments


E7 ready for experiments


Team size



# Name Position Info
1 Dr. Ovidiu TEȘILEANU Research Scientist CV     Info
2 Dr. Ștefan ATAMAN Research Scientist (Deputy Head) CV     Info
3 Dr. Andrei BERCEANU Research Scientist CV     Info
4 Dr. Andi CUCOANEȘ Research Scientist CV     Info
5 Dr. Cesim DUMLU Research Scientist Info
6 Dr. Liviu NEAGU Research Scientist CV     Info
7 Dr. Madalin ROSU Research Scientist Info
8 Dr. Aude SADET Research Scientist
9 Dr. Keita SETO Research Scientist CV     Info
10 Dr. Paul VASOS Research Scientist CV     Info
11 Dr. Vanessa RODRIGUES Engineer CV     Info
12 Dr. Yoshihide NAKAMIYA Post-doctoral Research Assistant Info
13 Dr. Jian Fuh ONG Post-doctoral Research Assistant Info
14 Dr. Andrei PATRASCU Post-doctoral Research Assistant Info
15 Ioana FIDEL Physicist
16 Silvana VASILCA Chemist
17 Florin TELEANU Junior Chemist
18 Jonathan TAMLYN Technician Info
The LGED after a group meeting, in May 2018.
Vacuum chamber for testing experimental setups, in the ELI-NP vacuum laboratory.
Thermal image of a vacuum setup during the bake-out procedure.
Two LGED members preparing a setup in the vacuum laboratory.
The Gamma-Polari-Calorimeter prototype in its early days - during the alignment.

Contact Us

Department Secretary