DETERMINATION OF LEVEL WIDTHS IN 15N USING NUCLEAR RESONANCE FLUORESCENCE

T. Szücs1,2, D. Bemmerer1, A. Cacioli3, Zs. Fülöp2, R. Massarczyk1,4, C. Michelagnoli5, T. P. Reinhardt4, R. Schwengner1, M. P. Takács1,4, C. A. Ur6, A. Wagner1, L. Wagner1,4

1 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
2 Institute for Nuclear Research (MTA Atomki), Debrecen, Hungary
3 INFN Sezione di Padova, Padova, Italy
4 Technische Universität Dresden, Dresden, Germany
5 Grand Accélérateur National d’Ions Lourds (GANIL), Caen, France
6 Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Romania

The stable nucleus 15N is the mirror of the astrophysically important 15O, the product of the leading reaction in the hydrogen burning CNO cycle. Most of the 15N level widths below the nucleon emission thresholds are known from just one nuclear resonance fluorescence (NRF) measurement published more than 30 years ago, with limited precision in some cases [1]. A recent experiment with the AGATA demonstrator array aimed to determine level widths using the Doppler Shift Attenuation Method (DSAM) in 15O and 15N populated in the 14N + 3H reaction. In order to set a benchmark value for the upcoming AGATA demonstrator data, the widths of several 15N levels have been studied using the bremsstrahlung facility γELBE [2] at the electron accelerator of Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The preliminary data seem to confirm the earlier NRF data. The precision of our new data are on a 10% level for the weak transitions, which have 60% and 100% error bars in the old dataset.

- Supported by the Helmholtz Association (HGF) through the Nuclear Astrophysics Virtual Institute (HGF VH-VI-417).