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Abstract. The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more
general excitation operators are introduced. These operators contain, in addition to the one particle-one
hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last
years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach.
In the first part of this paper, we present an overview of recent applications of the SRPA based on the
Skyrme and Gogny interactions. Giant resonances in 16O will be studied and their properties discussed
by using different models. In particular, we will present the first applications of the SRPA model with the
finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in
this type of calculations. After that, some more recent results, obtained by using a subtraction procedure
to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to
results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with
respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-
SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous
calculations and related to some proton-neutron matrix elements of the residual interaction.

1 Introduction

Collective modes are a common feature of many-body sys-
tems. Typical examples are giant resonances in atomic
nuclei [1, 2]. The random-phase approximation (RPA)
is a very successful microscopic theory for the study
of the main properties of collective states [3]. In RPA,
collective excitations are described as superpositions of
1 particle-1 hole (1ph) and 1 hole-1 particle (1hp) configu-
rations. This method, especially when applied within the
Energy Density Functional (EDF) framework, allows to
describe fairly good global properties of giant resonances,
such as the centroid energy and the total strength dis-
tribution. Among its merits, we mention that the RPA
preserves the energy-weighted sum rules (EWSR), in the
sense of the Thouless theorem [4]. This feature is very
important because it guarantees that spurious states as-
sociated with broken symmetries are exactly separated in
RPA from the physical states of the system.
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On the other hand, the RPA model has some limits.
Among them we recall that, by construction, it predicts
a perfectly harmonic spectrum and, moreover, the width
of the excited states cannot be reproduced except for the
single-particle Landau damping and for the escape width
(if continuum states are taken into account). A well-known
extension of the RPA scheme is the second RPA (SRPA)
model which amounts to enlarge the space of basic ele-
mentary excitations by including 2 particle-2 hole (2ph)
configurations and by coupling them with the 1ph ones
and among themselves. This leads to a richer treatment of
the excitation modes. The spreading width can be better
described because of the coupling with the 2ph configura-
tions.

However, due to the numerical effort required, SRPA
calculations have been performed only recently without
resorting to strong simplifications, in the adopted model
spaces or in the evaluation of the SRPA matrices. The last
few years have seen large-scale SRPA calculations done
without resorting to such approximations [5–10]. Perform-
ing such calculations makes it possible to identify some
specific features of the SRPA model not appearing in pre-
vious strongly truncated and simplified calculations. Un-
expectedly, the SRPA spectrum is systematically lowered
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by several MeV with respect to that obtained in the ordi-
nary RPA, often spoiling the good agreement with data.
The origin of this strong shift was unclear until recently
and is related to the implicit inclusion of correlations
in ground state. Within EDF approaches when beyond
mean-field effects are included, this inclusion can lead to
double-counting issues [11, 12]. Moreover, some problem-
atic aspects inherent to the SRPA have been recently ana-
lyzed and understood as related to the replacement of the
correlated ground state with the Hartree-Fock (HF) one,
that is generated by the use of the quasi-boson approxi-
mation (QBA). This replacement produces a violation of
the stability condition at the SRPA level [13]. In deriv-
ing the equations of motion in SRPA use is made, as in
RPA, of the QBA and it has been argued [14–16] that
this approximation is even more severe in SRPA than in
RPA. A careful analysis of the merits and limits of the
SRPA was presented in ref. [13]. In particular, the vi-
olation of the stability condition in SRPA [17] is illus-
trated and a generalization of the Thouless theorem [4]
is proven in the case where a correlated ground state is
used. Recently, an approximate and simplified way, with
respect to the full SRPA, has been proposed [18], where
RPA phonons are used as building blocks to construct the
excited states in a multi-phonon picture. This method, al-
though including two particle-two hole configurations in
the description of excited states, provides an alternative
method to reduce the effect of the strong shift found in
SRPA calculations.

In ref. [19], a procedure to avoid double-counting,
called the “subtraction” method, as been proposed and
applied in several beyond mean-field calculations, see for
example refs. [11, 20, 21]. Very recently [12], the subtrac-
tion procedure has been applied for the first time within
the Skyrme-SRPA framework showing that a considerable
reduction of the SRPA downwards shift with respect to the
RPA is found.

In this paper, we first show and discuss some SRPA
studies performed both with the Skyrme [22, 23] and the
Gogny [24] interactions. Then the “subtraction” method
will be briefly introduced and some applications presented.
In particular, we will show the first applications of the
subtraction procedure in Gogny-SRPA calculations, con-
firming the good results found in the Skyrme case.

The paper is organized as follows. In sect. 2 a brief
summary of the formal aspects of the SRPA model is done.
In sect. 3 we show the monopole and quadrupole strength
distributions in 16O obtained in RPA and SRPA, employ-
ing both the Skyrme and Gogny interactions. In sect. 4
the subtraction procedure is presented and applied. Fi-
nally, we draw some conclusions in sect. 5.

2 The SRPA scheme

In this section, we briefly discuss the RPA and SRPA
framework by following the equations of motion
method [3].

Let |0〉 be the ground state of the system and |ν〉 its
excited states whose energies are E0 and Eν , respectively.

Let us now introduce the operators Q†
ν in such a way that

Q†
ν |0〉 = |ν〉, (1)

Qν |0〉 = 0. (2)

It can be shown that the following equations hold for an
arbitrary operator δQ

〈0|
[
δQ,

[
H,Q†

ν

]]
|0〉 = ων〈0|

[
δQ,Q†

ν

]
|0〉, (3)

where ων = Eν − E0 are the excitation energies.
Let |HF 〉 be the HF ground state of the system where

the hole states below the Fermi energy are filled and the
particle states above are empty. In the following, we use
the indices m, n, p, q and i, j, k, l to indicate, respec-
tively, particle and hole states. In the RPA scheme the Q†

ν

operators are assumed to be a linear superposition of one
particle-one hole (1ph) operators, that is

Q†
ν =

∑

pi

Xν
pia

†
pai −

∑

pi

Y ν
pia

†
iap, (4)

where for notation simplicity, the coupling to total quan-
tum numbers is not indicated. By inserting the above ex-
pression in eq. (3) with δQ ∈ {a†

pai, a
†
iap} we obtain

(
A B

−B∗ −A∗

)(
Xν

Y ν

)
= ων

(
Xν

Y ν

)
, (5)

where the RPA matrices are

Api,qj = 〈HF |
[
a†

iap,
[
H, a†

qaj

]]
|HF 〉, (6)

Bpi,qj = −〈HF |
[
a†

iap,
[
H, a†

jaq

]]
|HF 〉. (7)

We stress that the exact ground state |0〉 has been replaced
by the HF ground state |HF 〉 in the expressions of the
RPA matrices (6), (7). This replacement, also known as
QBA, introduces a visible inconsistency since, on the one
hand, the definition of the ground state |0〉 as the vacuum
of the Q operators is used to derive the formal equations
of the motion (3), while, on the other hand, |HF 〉 is used
instead in calculating the expectation values appearing
in those equations. Furthermore, the QBA introduces a
violation of the Pauli principle since some terms of the
double-commutators appearing in the equations of motion
are missing.

In the SRPA framework, the Q†
ν operators have a more

general expression, containing also 2ph terms

Q†
ν =

∑

pi

(
Xν

pia
†
pai − Y ν

pia
†
iap

)

+
∑

p<m,i<j

(
Xν

pimja
†
paia

†
maj − Y ν

pimja
†
iapa

†
jam

)
.

(8)

In this case we obtain that the X ′s and Y ′s are solu-
tions of the equations

( A B
−B∗ −A∗

)(X ν

Yν

)
= ων

(X ν

Yν

)
, (9)
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where

A =

(
Ami,pk Ami,pqkl

Apqkl,mi Amnij,pqkl

)

,

B =

(
Bmi,pk Bmi,pqkl

Bpqkl,mi Bmnij,pqkl

)

,

and

X ν =
(

Xν
mi

Xν
mnij

)
, Yν =

(
Y ν

mi

Y ν
mnij

)
.

The elements Ami,pk and Bmi,pk of A and B are equal to
those defined in eqs. (6) and (7) while the others are

Ami,pqkl = 〈HF |
[
a†

iam,
[
H, a†

pa
†
qalak

]]
|HF 〉, (10)

Apqkl,mi = A∗
mi,pqkl, (11)

Amnij,pqkl = 〈HF |
[
a†

ia
†
janam,

[
H, a†

pa
†
qalak

]]
|HF 〉,

(12)

Bmi,pqkl = −〈HF |
[
a†

iam,
[
H, a†

ka†
l aqap

]]
|HF 〉, (13)

Bpqkl,mi = B∗
mi,pqkl, (14)

Bmnij,pqkl = −〈HF |
[
a†

ia
†
janam,

[
H, a†

ka†
l aqap

]]
|HF 〉.

(15)

Therefore, in SRPA, the QBA is still used. As a conse-
quence of the use of the |HF 〉 state in the evaluation of
the SRPA matrices we obtain, in particular [25,26]

Bmi,pqkl = Bpqkl,mi = Bmnij,pqkl = 0. (16)

However, when density-dependent interactions are em-
ployed, rearrangement terms appear also in the B12, B21,
as shown in ref. [8].

The matrix (10) describes the coupling of 1ph states
to 2ph states, while matrix (12) takes into account the
coupling between 2ph states themselves. The dimension of
these matrices, especially of the latter, can be very large. If
we neglect the residual interaction among the 2ph states,
the matrix (12) acquires a simple form,

Amnij,pqkl = U (ij)U (mn)δikδjlδmpδnq(εm + εn − εi − εj),
(17)

where U (ij) is the antisymmetrizer for the indices i, j
and the ε quantities are the HF single particle energies. In
this case, the SRPA problem can be reduced to an RPA
eigenvalue problem (5), (whose dimensions are determined
by the 1ph space), but where the matrix (6) depends now
on the excitation energies ω [26].

As mentioned above, many SRPA applications have
been indeed performed by using very small model spaces
for the 2ph sector and by making use of the so-called “diag-
onal” approximation (17). Only recently, full SRPA calcu-
lations have been carried out, showing that in some cases
this approximation is not justified [7, 9].
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Fig. 1. (Color online) Monopole strength distributions in the
isoscalar (upper panel) and isovector (lower panel) channels
obtained in Skyrme-SRPA for increasing values of the energy
cutoff, indicated in MeV in parenthesis in the figure, on the
2ph configurations.

3 Results in 16O

3.1 The Skyrme-SRPA case

In this section we present the nuclear strength distribu-
tions in 16O obtained in Skyrme-SRPA for the monopole
and quadrupole multipolarities and we compare them with
the RPA ones. The SGII [27] parametrization of the effec-
tive interaction is used in the present calculations.

In order to make simpler the comparison between dif-
ferent results, we have folded the discrete spectra coming
out from our calculations with a Lorentzian with a width
of 1MeV. The continuous strength distributions shown in
this work are thus obtained by using this smoothing pro-
cedure.

In RPA calculations, 1ph configurations with unper-
turbed energy up to 100MeV are considered, while in
the SRPA ones, we have considered all the 2ph configu-
rations with an unperturbed energy lower than an energy
cutoff Ecut. In figs. 1 and 2 we show the monopole and
quadrupole strength distributions, respectively, for differ-
ent choices of Ecut (indicated in MeV in parenthesis in
the figures). From the figures we see that a cutoff equal to
120MeV gives stable results. Similar stability checks have
been systematically made for all the results shown in the
following.

The multipole transition operators used are

F IS
λ =

∑
r2
i Yλ0(r̂i), (18)

F IV
λ =

∑
r2
i Yλ0(r̂i)τz(i), (19)

in the isoscalar and isovector channel, respectively.
In both isoscalar and isovector cases the strongest ef-

fect in SRPA is a several-MeV shift of the strength distri-
bution to lower energies with respect to RPA. This result
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Fig. 2. (Color online) Quadrupole strength distributions in the
isoscalar (upper panel) and isovector (lower panel) channels
obtained in Skyrme-SRPA for increasing values of the energy
cutoff, indicated in MeV in parenthesis in the figure, on the
2ph configurations.

seems to be a general feature of SRPA and has been found
also in different SRPA calculations [5,6,28]. Looking at the
figures, however, one sees that the profiles of the strength
distributions are not very much changed, except for the
above-mentioned shift.

3.2 The Gogny-SRPA case

In the following we will show some Gogny-SRPA calcula-
tions. Although the use of a finite-range interaction turns
out to be numerically more demanding with respect to the
zero-range case, it presents some advantages. The first one
is related to the fact that the Gogny force has been intro-
duced and adjusted to be used in both the HF and the
pairing channels. Since in the SRPA framework not only
the standard RPA-type particle-hole (ph) matrix elements
of the interaction are present, it seems to us that the use of
a force tailored to handle also other kinds of terms, such
as the particle-particle matrix elements, is more appro-
priate. A second, non-negligible, advantage is the finite
range of the four central terms of the Gogny force. We
expect that this feature provides, in a natural way, con-
vergent results with respect to the increase of the energy
cutoff in the 2ph space of the SRPA calculations. At the
same time we recall that, in the present calculations the
density-dependent zero-range type term is included in the
interaction.

We will focus our attention to the monopole isoscalar
response. The calculations are performed in spherical
symmetry in the harmonic-oscillator basis and the D1S
parametrization is used [29, 30]. All the single-particle
states with an unperturbed energy lower than 60MeV
(that is, all the 1ph configurations with an unperturbed
excitation energy up to 100MeV) are included in the
calculations. This choice ensures that the values of the

energy-weighted sum rules (EWSR) are stable. As previ-
ously done, in order to study the stability of the SRPA
results against the 2ph configurations, we have considered
all the configurations with an unperturbed energy lower
than an energy cutoff Ecut and progressively increase it.
This kind of study has allowed to single out a problem-
atic behavior of the SRPA results in the Gogny case. We
have found that in the Gogny-SRPA model some neutron-
proton (νπ) matrix elements of the interaction, appearing
in the beyond-RPA block matrices, are rather large, some
of them being from 5 to 10 times larger than all the other
(typical) matrix elements. These matrix elements, not ap-
pearing in standard RPA calculations, have a strong im-
pact on the stability of the results, in particular on the
peak structure of the response. It has been found that
their effects are especially strong in the matrix elements
coupling 1ph and 2ph configurations. We have thus per-
formed two different kinds of calculations in order to an-
alyze and single out the effects of these matrix elements.
We have considered a) a full SRPA calculation where all
the 2ph configurations are included; b) a calculation per-
formed by considering only the 2ph configurations that
are composed by pure neutron or proton excitations. This
means that in the case b) we do not include the 2ph con-
figurations where the two particles and the two holes have
a different isospin nature. As a consequence, no νπ ma-
trix elements of the interaction are present in the SRPA
matrices in the case b). The νπ matrix elements would
appear i) in the case where the 2ph configurations were
composed by 1 pure neutron and 1 pure proton 1ph con-
figurations (standard RPA 1ph configurations); ii) in the
case where both 1ph configurations were νπ 1ph config-
urations (typical charge-exchange 1ph configurations). In
the case of the A1ph,2ph matrix we have checked that the
majority of the matrix elements are relatively small (of
the order of 0.2–0.7MeV), the mean value being 0.2MeV.
However, some A1ph,2ph matrix elements are much larger
(up to 10 times) and, in particular, the largest ones are
due to the presence of 3 hole-1 particle νπ matrix elements
of the residual interaction of the type:

〈
ν−1π

∣
∣ V

∣
∣ν−1π−1

〉
A

, (20)
〈
π−1ν

∣
∣ V

∣
∣ν−1π−1

〉
A

, (21)

where “A” stands for “Antisymmetrized”. The angular
momentum coupling is done between the first-third and
second-fourth indices. In the largest A1ph,2ph terms the
strongest contributions are matrix elements of the residual
interaction of the type (21) (charge-exchange type). We
stress that also some 3 hole-1 particle matrix elements of
the residual interaction involving only neutron or proton
states are larger than the typical ones. However, they are
few and we checked numerically that the strong changes
in the SRPA response are not related to them. In the ap-
proximation b), also the νπ matrix elements of the matrix
A2ph,2ph (the matrix that couples among themselves the
2ph configurations) are neglected. However, these matrix
elements are not expected to have a strong impact and
this will be shown later in this work.
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Fig. 3. (Color online) (a) Isoscalar monopole response cal-
culated with the Gogny-RPA model (full line) and with the
Gogny-SRPA approach with an energy cutoff on the 2ph config-
urations of 60 (dotted line) and 80 (dashed line) MeV. (b) Same
as in (a) but in the SRPA∗ scheme. See the text for more de-
tails.

In the following we will indicate the two calculations
a) and b) as SRPA and SRPA∗, respectively. The strong
impact of the νπ matrix elements of the interaction can
be seen in fig. 3 where the isoscalar monopole response
calculated in the SRPA (a) and in the SRPA∗ (b) scheme
is displayed for two values of the cutoff energy, Ecut = 60
and 80MeV. The corresponding Gogny-RPA results are
also plotted in the two panels of the figure.

We see that in the SRPA scheme the responses as-
sociated with the different cutoff values are appreciably
different and, for Ecut = 80MeV, the main peak of the re-
sponse is pushed at energies more than 10MeV lower than
in the RPA case (a). The SRPA∗ results of panel (b) are
much more stable with respect to the change of the cutoff
energy. This can also be seen by considering the centroid
energies of the strength distributions. When the energy
cutoff is increased from 60 to 80MeV the centroid goes
from 20.37 to 15.30MeV (deviation of 25%) in the full
SRPA calculations whereas it is much less shifted, from
23.97 to 22.37MeV (7%), in the SRPA∗ case. It is also
worth noticing that in the latter case the difference be-
tween the spectra corresponding to the two energy cutoff
is essentially just a shift, while when the νπ matrix ele-
ments are not neglected, the SRPA strength distribution
is very much different from the RPA one.

To check more in detail the stability of the results in
the SRPA∗ case, we have performed also calculations with
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Fig. 4. (Color online) Gogny-SRPA∗ isoscalar monopole re-
sponse calculated with cutoff energies of 80 (dotted line), 100
(dot-dashed line) and 120 (dashed line) MeV. The Gogny-RPA
results are also plotted for reference (full line).

cutoff values of 100 and 120MeV (fig. 4). When the cutoff
is changed from 80 to 100MeV the centroid is shifted from
22.37 to 21.32MeV (5%) and when the cutoff is changed
from 100 to 120MeV the centroid moves from 21.32 to
20.49MeV (4%). On the contrary, the SRPA results still
change significantly increasing the energy cutoff and for
values larger than 80MeV the solution of the correspond-
ing equations is affected by the presence of a few imaginary
eigenvalues. We conclude that the stability expected when
the Gogny interaction is employed seems to be achieved in
the SRPA∗ case where, by construction, all the large νπ
matrix elements of the residual interaction in the beyond
RPA blocks of the matrices are neglected.

4 Subtracted SRPA results

As shown and discussed in the previous section, we
have seen that, independently of the kind of interaction
adopted, the SRPA spectrum is systematically lowered by
several MeV with respect to that obtained in the ordinary
RPA. On the other hand, RPA results based on the EDF
framework are typically in very good agreement with ex-
perimental data, at least concerning the centroid energies
and total strength of the giant resonances. Ideally, when
applied to the study of giant resonances, the SRPA should
thus keep almost unchanged these quantities and provide
a stronger fragmentation of the strength. As discussed in
the introduction, very recently, a method to cure the too
strong shift affecting in general all the beyond-RPA calcu-
lations, based on the so-called subtraction procedure has
been proposed [11].

In this subsection we show the effect of this procedure
on the SRPA results. We start considering the Skyrme-
SRPA case. More details on the procedure and on the
calculations can be found in [12]. Roughly speaking, the
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Fig. 5. (Color online) Isoscalar monopole response calculated
in the standard Skyrme-SRPA (solid-thin line), and with the
SSRPAF , with a cutoff for the correction terms at 50 (dotted
line), 60 (dashed line), and 70 (solid-thick line) MeV.

subtraction procedure consists in subtracting in the A11

block of the SRPA matrix the quantity

E11′ = −
∑

2,2′

A12(A22′)−1A2′1′ −
∑

2,2′

B12(A22′)−1B2′1′ ,

(22)
guaranteeing that the “subtracted SRPA” response re-
duces to the RPA one in the zero-frequency limit. When
density-dependent interactions are employed, the subtrac-
tion procedure is indeed more complex, modifing also the
B11 matrix. More details can be found in ref. [12], where
the full procedure adopted also in the present calculations
has been described.

From a numerical point of view, the main cost in cal-
culating the correction (22) consists in inverting the A22

matrix. This inversion becomes trivial if the matrix is as-
sumed to be diagonal. Therefore the correction can be cal-
culated with a reasonable extra-numerical effort. We use
the acronyms SSRPAF to denote the subtracted SRPA in
the full scheme, e.g. full inversion of the A22 matrix, and
SSRPAD to denote the subtracted SRPA assuming diago-
nal the A22 matrix in the correction term (22). Therefore,
for the 2ph space in the SRPA calculations, we take the
cutoff to be at 70MeV. This value leads to about 5000
2ph configurations in each of the two cases. This number
is small enough so that we can still fully invert the matrix
A22 to perform the subtraction.

Figure 5 shows the isoscalar monopole strength distri-
bution, calculated with the unmodified SRPA and with
the SSRPAF , using a cutoff in the correction term equal
to 50, 60, and 70MeV. In the last of these cases, all the
SRPA 2ph configurations are included in the correction.
The effect of the subtraction, as we expected, is to shift
the SRPA spectrum upwards, by amounts that increase
with the cutoff in the correction terms. The important dif-
ferences between the three subtracted strength functions
indicate that it is crucial to include all the 2ph states in
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Fig. 6. (Color online) Same as in fig. 5, but in the diagonal
approximation SSRPAD.
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Fig. 7. (Color online) Isoscalar monopole response calculated
in the Skyrme-SRPA without subtraction (solid-thin line), in
the SRPAD (dashed line) and in the SSRPAF (solid-thick line),
with a cutoff in the correction terms at 70 MeV.

the correction terms containing (A22′)−1 in eq. (22). The
calculation must be coherent, that is, the 2ph spaces used
in the original SRPA matrices and in the correction terms
should be the same.

Figure 6 shows the same results with the diagonal ap-
proximation SSRPAD and fig. 7 compares the full and
diagonal subtracted SRPA results with the 70MeV cut-
off in the correction terms. We observe that the SSRPAF

and SSRPAD results are very similar, the difference being
a small systematic shift to larger excitation energies in the
SSRPAD.

Another very positive feature of the SSRPA results is
the very weakly dependence on the 2ph cutoff. This can
been seen in fig. 8, where we show the isoscalar monopole
responses, with cutoffs for the correction terms at 70,
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Fig. 8. (Color online) Isoscalar monopole response in the diag-
onal approximation Skyrme-SSRPAD with cutoff for the cor-
rection terms at 70 (full line), 80 (dashed line), and 90 (dotted
line) MeV.

80, and 90MeV. In each case, this cutoff is the same
as that in the corresponding unsubtracted SRPA calcu-
lation. The three strength functions are very similar. We
can see that the subtraction procedure not only rectifies
the SRPA energy shifts for giant resonances, but also pro-
vides much more robust (cutoff-insensitive) results. We
stress that a similar behavior has been found also for the
isovector monopole and quadrupole responses. Moreover,
the subtracted-SRPA approach improves significantly the
agreement with the experimental data [12].

In the following, we will show the subtraction proce-
dure applied to the Gogny-SRPA case. In this case, be-
cause of the finite range of the interaction, calculations
are much heavier with respect to the Skyrme case. For
this reason, in these first applications we calculated the
correction (22) by using the diagonal approximation that
has been found to be very reasonable in the Skyrme case.
Further calculations to check this approximation also in
the Gogny case are left for future studies. In fig. 9, the de-
pendence on the cutoff on the 2ph configurations included
in calculating the correction (22) is studied in the SRPA
and SRPA∗ cases, in the upper and lower panels of the fig-
ure respectively. The subtracted results are indicated with
SSRPA and SSRPA∗, corresponding to the case a) and b)
discussed in see sect. 3.2 and we can see that the larger
the cutoff is the bigger is the shift towards high energy
provided by the subtraction procedure.

In fig. 10 the results obtained applying the subtrac-
tion method with the largest cutoff are compared with the
SRPA an RPA results. One can see that, in both cases,
the effect of the subtraction procedure is similar to the
one observed in the previous cases when the Skyrme in-
teraction was employed, producing a global shift upwards
of the strength distributions. From panel (a) of the fig-
ure we can also see that the shift is stronger in the full
SSRPA case, somehow curing the effect of those νπ ma-
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Fig. 9. (Color online) Dependence on the cutoff (value in
parenthesis in MeV units) of the subtracted procedure in the
Gogny case for the SSRPA and SSRPA∗ in panel (a) and (b),
respectively. The SRPA and SRPA∗ with the largest cutoff
are also shown for reference. The results refer to the isoscalar
monopole case. See the text for more details.
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Fig. 10. (Color online) Panel (a): comparison between the
Gogny-RPA, SRPA and SSRPA results; panel (b): same as
panel (a) but for the SRPA∗ and SSRPA∗ cases. See the text
for more details.

trix elements generating the very strong SRPA shift to-
wards lower energy discussed before. However, the sub-
tracted results in the two cases, still have significant dif-
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ferences. For example the percentage of EWSR (integrate
up to 40MeV) and the corresponding centroid energy are
65% and 20.82MeV in the SSRPA case, while 91% and
23.82MeV in the SSRPA∗ case. We checked that in both
cases, the missing strength is located above 40MeV ad it
is strongly fragmented over 2ph-like excitations.

5 Conclusions

In this paper we have shown and discussed recent appli-
cations of the SRPA framework by using both the Skyrme
and Gogny interactions. The SRPA scheme is fully treated
without employing usually adopted approximations in the
model space and in the evaluation of SRPA matrices. A
general feature of the SRPA strength distributions for gi-
ant resonances is a several-MeV shift to lower energies
with respect to RPA distributions.

When the Gogny interaction is employed, we have also
found that the responses are very strongly affected by
some νπ matrix elements of the residual interaction, par-
ticularly in the channels which couple the 1ph with the
2ph configurations, i.e. 3 hole-1 particle type. These ma-
trix elements do not contribute in Hartree-Fock and stan-
dard RPA calculations. Therefore, they do not contribute
in the calculations where the parameters of the effective
forces are fixed by the usual fitting procedures. To check
and constrain their effects, it is thus necessary to go be-
yond the conventional procedures.

After that we have applied to the SRPA a subtrac-
tion procedure proposed by Tselyaev some years ago to
overcome problems related to double counting in certain
beyond-mean-field calculations. We have verified that the
subtracted SRPA provides very robust predictions, which
are stable and very weakly cutoff-dependent. Furthermore,
the fulfillment of the stability condition, together with the
elimination of double counting, substantially reduces the
large anomalous shift downwards that the ordinary SRPA
systematically produces with respect to the RPA strength.
In particular, we also show the first applications where
this procedure is applied to the Gogny-SRPA case. We
show that this procedure is able to correct for the strong
shift also when those anomalous proton-neutron matrix
elements of the residual interaction mentioned before are
included in the calculations.

Future and more systematic applications of the SS-
RPA with both interactions are in order, for the study of
giant resonances and low lying excitations, with particular
emphasis in neutron rich systems.
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